
RADC-TR-P9-21 E.
interim Report
5anuary 1990

J
Co XNOWLEDGE-BASED LOGISTICS

PLANNING AND ITS APPLICATION IN
A/IANUFACTURING AND STRATEGIC
PLANNING

Carnegie Mellon University

Mark S. Fox z7d Katia P. Sycara

Sp-:,nsored by " D TIC
D - ense Advanced Research Prnjects Agency E.ECTE
A ?A Order No. 6129 MAR

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION O7,.tIM7TE,

T. views and conclusions contained in this document are those of the authors and should not be
ini .rpreted as necessarily representing the official policies, ether expressed or Implied, of the Defense
Ac ;-,,nced Research Projects Agency or the U.S. Government.

r'R me Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-57r0

Thi report has been reviewed by the RADC Public Affairs Division (PA)
and is rceasable to the National Technical Information Services (NTIS) At
NTIS it 0 .11 be releasable to the general public, including foreign nations.

RADC-TR-89-215 has been reviewed and is approved for publication.

APPROVED: J-4 A

NORTHRUP FOU"LER III
Project Engineer

ov7
APPROVED:

RAYMOND P. URTZ, JR
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: X

IGOR G. PLONISCH
Directorate of Plans & Programs

If you?: address has changed or if you wish to be removed from the RADC
mnailin ; li , or if the addressee is no longer enployed by yo:;r
organizaticn, please notify RADC (COES) Griffiss AFB NY 13441-5700.
"his will assist us in maintaining a current mailing list.

Do not return copies f this report unless contractual obligations or
notices on a specific document require that it be returned.

KNOWLEDGE-BASED LOGISTICS PLANNING AND ITS APPLICATION
IN MANUFACTURING AND STRATEGIC PLANNING

Mark S. Fox
Katia P. Sycara

Contractor: Carnegie Mellon University
Contract Number: F30602-88-C-0001
Effective Date of Contract: 30 November 1987
Contract Expiration Date: 30 November 1990
Short Title of Work: Knowledge-Based Logistics Planning and

Its Application in Manufacturing and Strategic Planning
Program Code Number: 9E20
Period of Work Covered: Nov 87 - Nov 88

Principal Investigator: Mark S. Fox
Phone: (412) 268-3832

RADC Project Engineer: Northrup Fowler III
Phone: (315) 330-7794

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Northrup Fowler III, RADC (COES),
Griffiss AFB NY 13441-5700 under Contract F30602-88-
C-0001.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

ia, REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFCATION,'OWNGRADiNG SCHEDU.E distribution unlimited.

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-215

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Carnegie Mellon University Rome Air Development Center (COES)
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

500 Forbs Ave
Pittsburgh PA 15213 Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (If applicable)

Research Projects Agency ISTO F30602-88-C-0001
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT

1400 Wilson Blvd ELEMENT NO NO. NO ACCESSION NO

Arlington VA 22209-2308 62301E F129 00 01
11. TITLE (Include Security Classification)
KNOWLEDGE-BASED LOGISTICS PLANNING AND ITS APPLICATION
IN MANUFACTURING AND STRATEGIC PLANNING

12. PERSONAL AUTHOR(S)

Mark S. Fox, Katia P. Sycara
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT

Interim FROM Nov 87TO Nov 88 January 1990 130
16. SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Artificial intelligence, Constraint based reasoning,
12 05 Planning- Manufacturing,

Logistics
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
"4This report summarizes the activities and results of the first year's effort on the project
that started at the end of November 1987. This effort concentrated on investigating the
constraint-directed reasoning behavior of a single agent. The report is divided into three
chapters. The first chapter presents the overall problem solving framework, an integration
of constraint satisfaction and heuristic search. The second chapter presents the propaga-
tion of preferential constraints pertaining to temporal relations and resource capacities.
The third chapter describes the focus of attention mechanism of a constraint-directed
scheduler and some preliminary experimental results. The fourth chapter presents the
representational framework for the concepts used in the research.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFiEDUNLIMITED 13 SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Northrup Fowler III (315) 330-7794 RADC COES)

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Table of Contents
INTRODUCTION

2

CHAPTER 1: Constraint Satisfaction and Heuristic Search
1.1 Introduction 2
1.2 Problem Space Topology 3
1.3 Problem Space Textures 5
1.4 CHS Problem Solving Process 8

CHAPTER 2: Propagating Temporal and Capacity Preferences

2.1 Introduction 9
2.1.1 The Issue 9
2.1.2 Formalization of the Scheduling Problem 10
2.1.3 An Example 12
2.1.4 Organization of the Paper 15

2.2 Related Work 16
2.3 A Probabilistic Framework for Preference Propagation 19

2.3.1 An Overview of the Approach 19
2.3.2 Building A Priori Probability Distributions Based on Local A Priori 21

Preferences
2.4 Propagating Start Time and Duration Distributions in a TCG 23

2.4.1 Preliminary Remarks 23
2.4.2 Propagation in an Acyclic TCG with Fixed-duration Activities 25

2.4.2.1 CO: I MEETS 1 27
2.4.2.2 CO: Io is BEFORE e, 28
2.4.2.3 Example 29

2.4.3 Propagation in an Acyclic TCG with Variable-duration Activities 30
2.4.3.1 CO: I0 MEETS g 31
2.4.3.2 CO: I0 BEFORE I 31

2.4.4 Relaxing the Acyclicity Assumption 32
2.4.5 Propagation in a TCG with Explicit Disjunctions 40
2.4.6 Result Interpretation 41

2.5 Resource Demand Densities 42
2.6 Discussion 45

2.6.1 Time Complexity 45
2.6.2 Expressiveness of the Model 45
2.6.3 Possible Improvements 46

2.6.3.1 Iterative and Hierarchical Preference Propagation 46
2.6.3.2 Activity Criticality 46
2.6.3.3 Value Goodness 47

2.7 Summary and Concluding Remarks 47
Appendixi: A Posteriori Start Time and Duration Distributions 49

0.1 Acyclic TCG with fixed-duration activities 49
0.1.1 C?: Io MEETS 1 49

0.1.2 CO: Io MET-BY 110 49

0.1.3 CO: I0 BEFORE I 49
0.1.4 CO: 1o AFTER Ig 49
0.1.5 C?: 10 DURING 50
0.1.6 CO: k0 CONTAINS I 50
0.1.7 Co: 10 STARTS I 50
0.1.8 CO: 10 STARTED-BY I? 50
0.1.9 CO: 10 FINISHES I 50
0.1.10 CO: 10 FINL SIED-BY I 50
0.1.11 CO: 10 OVERLAPS I? 50
0.1.12 C?: 10 OVERLAPPED-BY I? 51
0.1.13 CO: I0 EQUALS I? 51

0.2 Acyclic TCG with variable-duration activities 51
0.2.1 CO: 10 MEETS I? 51
0.2.2 C?: 10 MET-BY I? 51
0.2.3 C?: 10 BEFORE I? 52
0.2.4 CO: 10 AFTER I 52
0.2.5 C?: Io DURING I? 52
0.2.6 CO: 10 CONTAINS e, 52
0.2.7 CO: 10 STARTS I 52
0.2.8 CO: 10 STARTED-BY I 52
0.2.9 CO: 10 FINISHES I? 53
0.2.10 CO: 10 FINISHED-BY 1? 53
0.2.11 CO: 10 OVERLAPS I? 53
0.2.12 CO: 10 OVERLAPPED-BY 1 53
0.2.13 CO: I0 EQUALS e? 54

Appendix2: Activity Individual Demand Densities 55
0.1 Notations 55
0.2 Resource Demand Densities Produced by Fixed-Duration Activities 55
0.3 Resource Demand Densities Produced by Variable-Duration Activities 57

CHAPTER 3: Activity-Based Scheduling

3.1 Introduction 58
3.2 The Model 59
3.3 The Approach 60

3.3.1 An Activity-based Scheduler 60
3.3.2 A Probabilistic Framework to Account for Constraint Interactions 60

3.4 ARR: A Variable Ordering Heuristic Based on Activity Resource 62
Reliance

3.5 Three Value Ordering Heuristics 63
3.5.1 LCV: A Least Constraining Value Ordering Heuristic 63
3.5.2 HC: A Hill-Climbing Value Ordering Heuristic 64
3.5.3 INT: An Intermediate Value Ordering Heuristic 64

3.6 Preliminary Experimental Results 65

3.7 Discussion 66
3.8 Concluding Remarks 67

CHAPTER 4: Representation

4.1 Introduction 68
4.2 Activities 68
4.3 States 72
4.4 Resources 75
4.5 Production Units 77
4.6 Constraints 78

4.6.1 Representing Constraints 78
4.6.2 Representing temporal relations 84

Accession For

NTIS GRA&I

DTIC TAB

Unannounced E
Justification

By
Distribut lon/-

Availability Code

Avaii and/or
Dist Special

III

lIl Ui0i

List of Figures
Figure 2-1: Allen's 13 temporal relation constraints 11
Figure 2-2: TCG for a two order scheduling problem 13
Figure 2-3: Start time utility functions 14
Figure 2-4: Gantt chart for a schedule of orderi obtained with scenariol. 15

The global start time utility has been obtained by adding the
start time utility of the five activities.

Figure 2-5: Gantt chart for a schedule of orderi obtained with scenario2. 15
The global start time utility has been obtained by adding the
start time utility of the five activities.

Figure 2-6: An inconsistent CSP with a consistent TCG 17
Figure 2-7: A utility interpretation of DEVISER's start time windows 18
Figure 2-8: Rit's generalized window 18
Figure 2-9: A priori probability density P(x) for a variable x with utility 22

function u(x). This is an example with a single optimal value.
Figure 2-10: Example of a TCG with no explicit disjunctions 24
Figure 2-11: Example of a TCG with explicit disjunctions 24
Figure 2-12: An Acyclic TCG. The time interval I0 is related to J, 10, ..., 26

1o by respectively C'0, C2, ... Co

Figure 2-13: I MEETS 28
Figure 2-14: I BEFORE 17 28
Figure 2-15: A posteriori start time densities for order 2 30
Figure 2-16: Illustration of Fubini's Theorem in a TCG with 3 Time 33

Periods
Figure 2-17: A TCG with 3 Time Periods 35
Figure 2-18: Procedure to express P(C,...,CjIst0=t&du0=d) as an iterated 37

integral
Figure 2-19: Main steps involved in the construction of (15). Notice that 38

the ox expressions have been omitted as they trivially
evaluate to 1.

Figure 2-20: A posteriori start time densities for order 1 39
Figure 2-21: A TCG with explicit disjunctions 40
Figure 2-22: R1, R2, and R3's aggregate demand densities 43
Figure 2-23: Contributions of A3, A4, and A7 to R2's aggregate demand 44

density
Figure 3-1: Average search efficiencies and schedule values for 5 65

combinations of variable and value ordering heuristics run on
a preliminary set of 38 scheduling problems. The standard
deviations appear between parentheses.

Figure 4-1: Relations representing elaboration of activities 69
Figure 4-2: Precedence relations between activities 69
Figure 4-3: Aggregate Activity 70
Figure 4-4: A Process Plan 70
Figure 4-5: The relation has-subactivity 70
Figure 4-6: The relation subactivity-of 71
Figure 4-7: The relation required-resource 71

iv

Figure 4-8: The relation resource-for 71
Figure 4-9: Representation of an activity 72
Figure 4-10: Representation of an operation 72
Figure 4-11: Relations defining enablement of activities 73
Figure 4-12: Relations defining activity postconditions 73
Figure 4-13: Relations defining state aggregation 74
Figure 4-14: Representation of the has-time-interval relation 74
Figure 4-15: Representation of a state 75
Figure 4-16: Representation of an aggregate state 75
Figure 4-17: The representation of a resource 76
Figure 4-18: The representation of a milling machine 76
Figure 4-19: The representation of a fixture 76
Figure 4-20: Representation of a work-order 77
Figure 4-21: Representation of a part 77
Figure 4-22: Relations associating a single constraint to a variable 79
Figure 4-23: Relations linking simple and aggregate variables 79
Figure 4-24: Representation of a simple variable 80
Figure 4-25: Relations connecting aggregate variables 80
Figure 4-26: Representation of an aggregate variable 81
Figure 4-27: Representation of constraint relaxations 82
Figure 4-28: Continuous constraint relaxation 82
Figure 4-29: Discrete constraint relaxation 82
Figure 4-30: Exclusive and inclusive OR relaxations 83
Figure 4-31: Representation of the relations 83

has-relaxation-speclrelaxation-spec-of
Figure 4-32: Representation of a constraint 84
Figure 4-33: Five of Allen's Temporal Relations 85
Figure 4-34: Representation of the rest of Allen's Temporal Relations 86
Figure 4-35: Representation of a time object 87
Figure 4-36: The relations dates and dated-by 88
Figure 4-37: Representation of a time line 88
Figure 4-38: Representation of a time interval 89

INTRODUCTION

Many problems that arise in Manufacturing and Strategic Planning involve examining an
exponentially growing set of alternatives and finding a solution that satisfies a large number of
constraints. While some of these constraints can be expressed in mathematical form, many tend
to be heuristic or symbolic in nature requiring the use of powerful Artificial Intelligence-based
constraint directed reasoning tools. The theoretical basis for developing these tools is the
development of a general theory of constraint-directed reasoning.

Our experience in developing planning and scheduling systems for large problems has
demonstrated the importance of being able to reason about constraints. By understanding the
constraints and their impact on the structure of the problem space, better results can be generated
more efficiently. The theory of constraint-directed reasoning has two parts. The investigation of
a theory of constraint-directed reasoning as performed by a single agent, and the investigation of
distributed constraint-directed reasoning in a multi-agent problem solving situation. In the case
of a single agent, the issues under investigation include:

" The semantics of constraint representation

* How constraints determine the structure of the problem space

" How constraints focus the attention of search

" How constraints diagnose poor decisions and repair them

In the multi-agent case, the general issue is to develop a theory of negotiation using
constraints. The issues under investigation include:

" How can the agents coordinate their decisions in order to achieve global behavior

" At what points during problem solving is negotiation effective

" What are the negotiation strategies and protocols

This report summarises the activities and results of the first year's effort on the project that
started at the end of November 1987. This effort concentrated on investigating the constraint-
direcLed reasoning behavior of a single agent. The report is divided into three chapters. The first
chapter presents the overall problem solving framework, an integration of constraint satisfaction
and heuristic search. The second chapter presents the propagation of preferential constraints
pertaining to temporal relations and resource capacities. The third chapter describes the focus of
attention mechanism of a constraint-directed scheduler and some preliminary experimental
results. The fourth chapter presents the representational framework for the concepts used in the
research.

CHAPTER 1: Constraint Satisfaction and Heuristic Search

1.1 Introduction
We propose a model of problem solving that provides both structure and focus to search in the

problem space. The model achieves this by combining the process of constraint satisfaction
(CSP) with heuristic search (HS). The resulting model both reduces search complexity and
provides a more formal explanation of the nature and power of heuristics in problem solving.
Our model focuses on reasoning within a problem space, and can be viewed as being
complementary to the Soar architecture [Laird, Newell & Rosenbloom 87].

Why are problem solving models important: Choosing the right model should lead to the
efficient construction of an acceptable quality solution. Two approaches to constructing problem
solving models have been taken. The first comes out of the Operations Research tradition where
an optimizing algorithm is constructed for a a narrow class of problems. For example, the
Simplex method finds an optimial solution for problems represented as a set of linear
inequalities. The second class of models focuses on general theories of problem solving. For
example, at Carnegie Mellon the creation of general models for problem solving dates back to
1956 with the work on Logic Theorist [Newell & Simon 56] to GPS [Newell & Simon 63] to
production systems [Newell & Simon 72] and more recently to Soar [Laird, Newell &
Rosenbloom 87]. Our interest lies in the latter class of models. In particular, we are concerned
with the principles behind how knowledge can be used to structure and guide search in the
problem space1.

We propose a refinement to the heuristic search problem solving model, which we call
Constrained Heuristic Search (CHS) that retains the synthetic capabilities of heuristics search
while obtaining the structural characteristics of constraintsatisfaction techniques2 . In particular,
our model begins with the definition of a problem space composed of states, operators and an
evaluation function, and adds two fundamental components:

1. Problem Space Topology: Provides a structural characterization of the problem
space.

2. Problem Space Textures: Provide measures of decision complexity and
importance.

1A problem space is composed of an initial state that defines the problem's initial conditions, a set of operators
that generate new states and an evaluation function that identifies solution states.

2Simon [Simon 83] has proposed that there are three "rather distinct ways ... for representing and thinking about
problem solving tasks." The first views problem solving as a search through a "problem space" of nodes (i.e.,
states) and links. The second views problem solving as reasoning, where new statements are deduced from a set of
axioms in a formal language of logic. The third views problem solving as constraint satisfaction, where the
incremental addition of constraints narrows down a set of objects to a subset which satisfies all the constraints.
While these views are not mutually exclusive, they are viewed as being distinct. In fact, a constraint satisfying
algorithm is viewed as taking giant steps, not creating new objects, but reducing the entire space of objects to a
satisficing set. (This assumes the ability to enumerate a set of objects from which to choose.) On the other hand,
search techniques, for example, planning, can be synthetic; incrementally constructing a solution as part of the
search process.

2

1.2 Problem Space Topology
Early notions of sources of efficiency in heuristic search have focused on me concept of the

"well structuredness" of the problem space. At least three views of well structured problem
spaces exist:

" A problem is not well structured if it cannot be completely defined. This is the case
if an objective function cannot be identified or if some problem constraints are not
known. Rapid prototyping is a means of eliciting problem structure.

" Simon's [Simon 83] definition of well-structuredness essentially focuses on the
ability to operationalize, in a computational sense, the means of solving the problem
(i.e. a problem space in order to be well-structured requires a success criterion, a
representation structure where states are represented, a set of legal moves between
states, etc.)

" Newell [Newell 69] has defined a problem as being "ill structured" if there only
exists weak methods to solve it. This definition focuses on the performance of the
problem solver.

We believe that the third definition is more in line with "conventional wisdom"; it is essentially
an issue of problem solving performance, and that problem space structure and focus of attention
are important components of problem solving performance.

Within the heuristic search model, a variety of techniques for structuring the problem space
have been investigated. ABSTRIPS [Sacerdoti 74] demonstrated how hierarchical reformulation
of the problem space via omission of variables reduces search complexity. Hearsay-U [Erman et
al 80], MOLGEN [Stefik 81], and OPIS [Smith, Fox & Ow 86] demonstrated how hierarchical
reformulation via aggregation/abstraction reduces search complexity. ISIS [Fox
83a] demonstrated how hierarchical reformulation via omission of constraints reduces search
complexity. These structuring techniques are more engineering guidelines than formal
characterizations.

On the other hand, constraint satisfaction research has begun to formalize the concept of well
structured constraint graphs, but their techniques can only be applied to a narrow set of
problems. Constraint satisfaction techniques, as described in [Mackworth 77a, Haralick &
Elliott 80, Freuder 82a, Dechter & Pearl 87], approach problem solving by constructing a
constraint graph where nodes are variables with discrete domains and arcs are n-ary constraints
among the values the variables may be assigned. Problem solving is performed by sequentially
choosing a variable and a value to assign to it that satisfies all constraints incident upon it.
Backtracking occurs when an assignment cannot be found. Research has gone into methods for
structuring the network so that the amount of backtracking can be reduced.

CSP methods turn out to be a specializations of heuristic search. In particular, they are
restricted to a class of problems we define as Finite State Problem Spaces (FSPS).

Definition 1: A Finite State Problem Space has each state defined by a finite set of
variables, where each variable's assignment is a subset of a finite, discrete domain. 3

3This definition does not include CSP techniques that propagate intervals across variables whose domains arm
continuous such as in [Smith 83a, Vere 83a].

3

Solving a problem in a FSPS involves finding an assignment of values to the variables that
satisfy a set of constraints. From a problem space perspective, the initial state contains all the
variables and their domains, the operators select a varible and a value to assign it, and the
evaluation function is composed of the constraints. The sequence of states generated in the
search space represent alternative orderings of variables and values to assign to them.
Backtracking results in new braches in the search tree. The important insight that we wish to
draw from CSP research is that by manipulating the constraint graph, the ordering of variables
and values can be optimized. That is, the constraint graph can be viewed as providing a structure
for the problem space. Arc-consistency is one such technique that achieves local consistency
between groups of variables via the elimination of incompatible values [Montanari
74, Mackworth 77a, Davis 87]. Width 1 networks that are arc consistent are backtrack free.

Based upon the above, we can now provide a description of a problem space's topology.
Problem space topology refers to the structure of the problem space that provides a "map" of
decision areas. Choosing the area from which to search is the role of the texture measures.
Reformulation of a problem results in a different topology. We define problem space topology as
a graph where nodes are decision points (i.e. variables or set of variables) and arcs represent the
effects that decisions have on each other (i.e. constraints)4 . Each variable has a (finite or
infinite) set of possible values (decisions) associated to it. (This is equivalent to a CSP problem
formulation, but in order for constraint graphs to be viable for general heuristic search they have
to be extended to include a wider variety of constraints such as preferences, and variables with
continous, non-interval domains.) In the factory scheduling domain a node is often identified as
an activity whose possible values are tuples specifying possible resources and times for the
activity. Constraints are temporal and causal relations between the activities, and preferences for
certain selections.

We distinguish between two types of problem space topologies:

Definition 2: A completely structured problem space is one in which all non-
redundant nodes (variables) and arcs (constraints) are known a priori.

This is true of all CSP formulations.

Definition 3: A partially structured problem space is one in which not all non-
redundant nodes and arcs are known prior to problem solving.

This definition tends to be true of problems in which synthesis is performed resulting in new
variables and constraints (e.g. the generation of new subgoals during the planning process).

The role of operators within CHS is to create and/or alter topologies, i.e., nodes and
constraints. Indeed there are two main types of operators: operators that add structure to the
problem space and operators that restructure the problem space.

Features of the problem space topology are the types of nodes and constraints (and their
associated propagation algorithms). Davis [Davis 87] mentions, indirectly, a few types of what

4Notice that we have assumed binary constraints. In the case of constraints of higher arity, it is convenient to
think of the topology as a graph with two types of nodes: variable-nodes and constraint-nodes. Arcs indicate how a
constraint affects different variables. The nur-br. of arcs coming out of a constraint-node is the arity of the
corresponding constraint.

4

we view as topological features of the problem space, namely the types of values the domain of a
node may contain:

" nodes whose domains are discrete and finite (label and value inference)

" nodes whose domains are intervals

• nodes whose domain has a belief for each member (relaxation labelling)

" nodes whose domain are expressions (expression inference)
and types of constraints:

" constraints that are unary predicates,

" constraints that order relations,

" constraints that are bounded differences (e.g. x-y > c),

" constraints that are linear equations and inequations with unit (i.e. -1, 0, 1)
coefficients,

" constraints that are linear equalities and inequalities with arbitrary coefficients,

" constraints that are boolean combinations of constraints,

" constraints that are algebraic equations,

" constraints that are transcendental equations.
Additionally domains may or may not have preferences for values (e.g. preferences for due dates
of a job).

The importance of formalizing the concept of problem space topology is that:

" problem spaces have been refined to include the representation of constraints.

" the process of problem reformulation can be formalized as transformations of
problem space topological primitives, and

* properties can be proved about the search to be performed, for example, from the
CSP literature, width-1 constraint networks that are arc consistent are backtrack free.

1.3 Problem Space Textures
Well focused search is concerned with the ability of the search algorithm to opportunistically

decide where in the problem space the next decision is to be made 5. In order for search to be
well focused there must be features of the problem space which differentiate one subspace from
another, and these features must be related to the goals of the problem. We have identified and
are experimenting with seven such features that we call problem space textures [Sadeh & Fox
88]. Below we define these textures for CHSs where all solutions are equally preferred. These
definitions can be generalized to the class of Optimization Constraint Satisfaction Problems
(OCHSs), where the objective function is a sum of functions of one variable6.

5'he concept of focused search was elaborated in Hearsay-ll [Erman 80].

6This is done using Bayesian probabilities to approximate the likelihood that a given assignment results in an
optimal solution [Sadeh & Fox 881.

* (Variable) Value Goodness: the probability that the assignment of that value to the
variable leads to an overall solution to the CHS (i.e. to a fully consistent set of
assignments). This texture is related to the value ordering heuristics [Haralick &
Elliott 80] which look for the least constraining values. Value ordering heuristics are
meant to reduce the chance of backtracking. In the case of discrete variables, the
goodness of a value is the ratio of complete assignments that are solutions to the
CHS and have that value for the variable over the total number of possible
assignments.

" Constraint Tightness: Constraint tightness refers to the contention between one
constraint or a subset of constraints with all the other problem constraints. Consider
a CHS A and a subset S of constraints in A. Let B be the CHS obtained by omitting
S's constraints in A. The constraint tightness induced by S on A is defined as the
probability that a solution to B is not a solution to A. In the case of discrete
variables, this is the ratio of solutions to B that are not solutions to A over the total
number of solutions to B or equivalently the ratio of solutions to B that do not
satisfy S over the total number of solutions to B. Notice that in particular the
constraint tightness induced on a redundant constraint is zero. Also the constraint
tightness on the set of all constraints of a problem can be used as a measure of the
difficulty of the problem. For instance, in the case of discrete variables, this last
measure can be expressed as the number of solutions to the CHS over the number of
possible complete assignments. Finally notice also that this definition generalizes
Nadel's notion of constraint looseness/satisfiability ratio [Nadel 86a] to groups of
constraints and to constraints involving both discrete and continuous variables.
Moreover Nadel's satisfiability ratio, defined only for a single constraint involving
discrete variables, differs from our notion of constraint looseness/tightness in one
important way: it only depends on the constraint itself while our definition is with
respect to a given CHS. Indeed our notion of constraint tightness also accounts for
the other constraints of the problem and their interactions with the constraints whose
tightness is being measured.

" Variable Tightness with respect to a set of constraints: Again consider a CHS A,
a subset S of constraints, and the CHS B obtained by omitting S in A. A variable V's
tightness with respect to the set of constraints S is defined as the probability that the
value of V in a solution to B does not violate S. In the case of discrete variables, this
is simply the ratio of solutions to B in which V's value violates S (i.e. at least one of
the constraints in S) over the total number of solutions to B.

* Constraint Reliance: This measures the the importance of satisfying a particular
constraint. Consider a constraint C. We defined CHS B as being CHS A - (C).
Given that constraints can be disjunctively defined, the reliance of CHS A on a
constraint C is the probability that a solutio to CHS B is not a solution to A. In the

6

case of discrete variables, constraint reliance is defined as the ratio of the number of
solutions to CHS B that are not a solution to CHS A over the number of solutions to

CHS B. The larger the value, the greater the reliance the problem has on satisfying
the particular constraint.

* Variable Tightness: Consider a variable V in a CHS A. Let S be the set of
constraints involving V (i.e. in a graph with variable-nodes and constraint-nodes, S

is the set of constraint-nodes that are directly connected to V) and B be the CHS
obtained by omitting S in A. V's tightness with respect to S is simply called V's
tightness. Hence the tightness of a variable is the probability that an assignment
consistent with all the problem constraints that do not involve that variable does not
result in a solution. In the case of discrete variables, this is the ratio of the number of

complete assignments that are solutions to A over the number of complete
assignments that are solutions to B, i.e. the ratio of solutions to the CHS over the
number of complete assignments that satisfy all the CHS's constraints except

possibly one or more constraints involving V. Alternatively one can define variable
looseness as the probability that an assignment that has been checked for
consistency with all the problem constraints, except those involving that variable,
results in a fully consistent assignment. Notice that if one uses a variable
instantiation order where V is the last variable, V's tightness is the backtracking
probability. Indeed variable looseness/tightness can be identified with variable

ordering heuristics [Haralick & Elliott 80, Freuder 82a] which instantiate variables
in order of decreasing tightness.

*Variable Contention: It estimates the degree of contention that exists among a set
of constraints in assigning a value to a variable. Given a CHS A, a set S of
constraints incident at variable V, and CHS B = CHS A - S, one measure of
contention is to take the ratio of the number of elements s of the powerset of S that
do not have a solution to CHS B + s, to the total number of elements in the powerset
of S. In essence, the more combinations of constraints in S for which there is not a
solution, the greater the contention.

* Constraint Arity: the number of variables involved in a constraint or more
generally in a group of constraints.

These textures generalize the notion of constraint satisfiability or looseness defined by [Nadel
86a] and apply to both CHSs (and CSPs) with discrete and continuous variables. We have
extended these textures to OCHSs where the objective function is expressed as a sum of
functions of one variable, using Bayesian probabilities to approximate the likelihood that a
variable results in an optimal value.

Notice that, unless one knows all the CHS's solutions, the textures that we have just defined
have to be approximated. Textures may sometime be evaluated analytically [Sadeh & Fox 88].
A brute force method to evaluate any texture measure consists in the use of Monte Carlo

7

techniques. Such techniques may however be very costly. In general, for a given CHS, some
textures are easier to approximate than others, and some are also more useful than others.
Usually the texture measures that contain the most information are also the ones that are the most
difficult to evaluate. Hence there is a tradeoff. Each domain may have its own approximation for
a texture measure.

Textures provide a more formal view of attention focusing. As such, they can explain the
power of heuristic knowledge used in search. We have already mentioned variable and value
ordering heuristics respectively based on variable looseness and value goodness. Another
example is in factory scheduling, where a useful heuristic is to schedule the bottleneck resource
frst. In our factory scheduling example we show that the concept of resource bottleneck
analysis is motivated by constraint arity considerations and illustrates the concept of constraint
tightness.

1.4 CHS Problem Solving Process
The CHS model of problem solving is a combination of constraint satisfaction and heuristic

search. In particular we view a problem space's topology as a mesh that envelopes the problem
space. Propagation of constraints results in the tightening of the mesh around and through the
problem space, thus reducing the number of alternatives to be considered and/or generated. In
completely structured topologies, the nodes represent islands at which decisions are to be made.
For partially structured topologies, nodes represent starting points at which operators are to
generate new nodes.

The problem solving model we propose contains the following elements:
" search begins with a single state in which the initial problem space topology (i.e.

constraint mesh) is constructed.

" constraint propagation through the mesh is performed

" texture measures are computed

" decision nodes are identified

* a new state is generated by selecting an operator that either adds structure to the
topology or further restricts the domain of a variable

The next two sections demonstrate the application of the CHS model to the problems of spatial
planning and factory scheduling.

8

CHAPTER 2: Propagating Temporal and Capacity Preferences

2.1 Introduction

2.1.1 The Issue
We are concerned with the issue of how to opportunistically focus an incremental scheduler's

attention on the most critical decision points and the most promising decisions in order to reduce
search and improve the quality of the resulting schedule. More specifically we are concerned
with incremental constraint directed scheduling where the problem is defined as a set of
variables and a set of constraints. Both variables and constraints are determined by the initial
scheduling problem and the earlier decisions made by the scheduler. The interactions of the
constraints determine the structure of the problem space. We characterize the problem space with
a set of texture measures that are used to both identify critical decision points and select a
decision at each of these points. The process of analyzing the current problem and generating
new decisions (e.g. scheduling an operation) is repeated, thereby resulting in the incremental
construction of a schedule.

Real-life scheduling problems are subject to a variety of preferences [Johnson 74, Fox
83b, Ow 84, Smith 86] such as meeting due dates, reducing the number of machine set-ups,
reducing inventory costs, using accurate and/or fast machines, making sure that some jobs are
performed within a single work-shift, etc. Although these preferences are usually set
independently to one another, they interact. For instance selection of a good start time for an
activity (e.g. to meet a due date) may prevent the selection of an accurate machine for another
operation or may prevent meeting another job's due date. For this reason, selecting operation
start times or allocating resources based solely on local a priori preferences is likely to result in
poor schedules. Preference propagation is meant to allow for the construction of measures that
reflect preference interactions. These measures can then serve to guide the construction of a good
overall schedule rather than a schedule that locally optimizes a subset of preferences.

We perform preference propagation within a probabilistic framework. We associate with each
variable's value a probability that reflects the likelihood that this value results in a good schedule
overall (value goodness). These probabilities are refined by being propagated across the problem
constraints. Value goodness is a texture measure that helps selecting assignments for variables.
Identification of critical variables (i.e. decision points) is performed using another texture
measure, called variable looseness. A critical variable or group of variables is one whose good
overall values are likely to become unavailable if one were to start assigning values to other
variables first. Notice that if our measures of value goodness were perfect, the order in which
variables are instantiated would not matter. However such perfect measures could only be
obtained by first solving the problem. Because in practice measures of value goodness contain
some uncertainty, one has to account for the effects of assigning a value to a variable over the
availabiity of good values for other variables. A variable instantiation order is accordingly
defined starting with the most critical (i.e. least loose) variables. In this paper we are interested
in the identification of critical activities (i.e. operations). An activity is made of a start time
variable, possibly a duration variable, and a set of resource variables. We identify critical

9

activities as the ones that heavily rely on the possession of highly contended resources. Indeed, if
such critical activities are not scheduled first, it is very likely, that by the time the scheduler turns
its attention to these activities, the resources that would have been the most appropriate for these
activities will no longer be available.

We discuss preference propagation in temporal/capacity constraint graphs (T/CCG). Temporal
constraints define partial orderings among the activities to be scheduled. All thirteen of Allen's
[Allen 84] temporal relation constraints are accounted for. Resource capacity constraints restrict

the use of resources to only one activity at a time. Both situations with fixed and variable
duration activities are discussed. Our formalism allows for both activity start time and duration
preferences as well as for resource preferences. It also accounts for prior resource reservations if
any. It is shown that the (a posteriori) start time and duration distributions resulting from the
propagation across the temporal constraints can be combined to identify resources that are highly
contended for (resource contention) and activities that heavily rely on the possession of these
resources (activity resource reliance).

We also argue that a posteriori start time/duration distributions can be seen locally as measures
of start time/duration goodness and globally as measures of start time/duration looseness. Our
notion start time/duration looseness generalizes the Operations Research notion of slack [Baker
74, Johnson 74].

2.1.2 Formalization of the Scheduling Problem
The factory scheduling problem is often described as a two step problem: a process planning

step and a resource planning step [Fox 83b]. Process planning deals with the generation and
selection of plans (i.e. process routings) that satisfy the order specifications. Resource planning,
sometimes also referred to as scheduling, deals with the allocation of resources (e.g. machines)
to activities and the assignment of start and end times to activities. In general both steps can be
interleaved.

In this paper we will be concerned exclusively with the scheduling part of the problem: we will
assume that we are given a set of plans to schedule. Here a plan is simply defined as a partial
ordering of activities. Each activity may require one or more resources, for each of which there
can be several alternatives.

We formalize the scheduling problem as a constraint satisfaction problem (CSP). The variables
of the problem are the activity start times, the resources allocated to each activity, when there is a
choice, and possibly the duration of each activity. An activity's end time is defined as the sum of
the activity's start time and duration. We differentiate between two types of constraints: required
constraints and preferential constraints [Fox 83b]. Required constraints determine the
admissibility of a solution to the CSP (schedule) while preferential constraints allow for
differentiating among admissible solutions. The degree of satisfaction of a preferential
constraint is defined by a utility function that maps the possible values of a variable onto utilities
ranging between 0 and 1. A utility of 0 indicates a non-admissible value. A value with utility 1 is
an optimal value.

We will be dealing explicitly with two types of required constraints: temporal relation
constraints and resource capacity constraints. Temporal relation constraints are used to describe

10

Relation Pictorial Representation

X BEFORE Y XXX YYY
Y AFTER X

X EQUALS Y XXX
Y EQUALS X YYY

X MEETS Y XXXYYY
Y MET-BY X

X OVERLAPS Y XXX
Y OVERLAPPED-BY X YYY

x DURING Y XXX
Y CONTAINS X YYYYY

X STARTS Y XXX
Y STARTED-BY X YYYYY

X FINISHES Y XXX
Y FINISHED-BY X YYYYY

Figure 2-1: Allen's 13 temporal relation constraints

partial orderings among activities as provided by the process planning step. We will be using
Allen's temporal relation constraints [Allen 84] to describe these constraints (Figure 2-1). We
will refer to the graph defined by these constraints, for a given CSP, as the CSP's temporal
constraint graph (TCG). Capacity constraints restrict the number of reservations of a resource
over any time interval to the capacity of that resource. In this paper, for the sake of simplicity,
we will always be assuming resources with unary capacity. Together these required constraints
form a temporal/capacity constraint graph (T/CCG). A schedule that does not satisfy the required
constraints of the CSP is not admissible.

We will allow for preferential constraints on activity start times and durations as well as on the
resources to be used by each activity. Preferential constraints are described with utility functions.
For a given preferential constraint, a variable's value is admissible only if its utility is strictly
positive. High preference for an admissible value is indicated by a high utility. In practice the
domain of admissible values resulting from these preferential constraints, i.e. the domain with
strictly positive utilities, is always bounded. For instance the domain of admissible start times of
an activity is constrained at one end by the order release date and at the other end by the order
due date according to the durations of the activities that precede/follow the activity within the
plan.

Notations

We have to schedule a set of activities (A, A2 AM). Let Ik denote the time interval over
which Ak spans. Stk, etk and duk respectively denote lk's start time, end time, and duration.

11

Activities are connected by a set of temporal relation constraints, thereby forming a TCG. We
view TCGs as undirected graphs. An arc in a TCG indicates the presence of a temporal relation
between two intervals (e.g. 11 BEFORE 12 or equivalently 12 AFTER Ii). Let C1, C2,..., C. denote
the temporal relation constraints in the TCG. The TCG, which has been produced during the
process planning phase, is assumed consistent.

Additionally there are capacity constraints limiting the use of each resource to only one
activity at a time. By adding these capacity constraints to the TCG, one obtains the CSP's
T/CCG. In this paper we will not need to formalize the description of T/CCGs any further as we
will be mainly dealing with their temporal abstractions, i.e. the TCGs obtained by omitting the
capacity constraints in the T/CCGs.

Each activity Ak has a preferential start time constraint with associated utility function denoted
u Activity Ak's duration is either fixed or constrained by a preferential constraint with utility

function ud,,k The ranges of admissible start times and durations are assumed to be bounded,

which is always the case in practice.

Each activity Ak may require one or more resources Rkt, R2e,..., Rk,. For each resource Rki
required by activity Ak, there is a set of possible resources Rk.1, Rt,..., RAi, available on the
factory floor. This set is assumed to be finite, which is also always the case in practice. These
different resources are usually not equally preferred. A resource utility function, uR. associates a

utility (preference) uR (Rkij) with each possible resource RkU. For instance a milling operation

may require a milling machine and a human operator. There may be two milling machines
available on the factory floor. For this specific milling operation, milling-machine may have a
preference of 1.0 and milling machine2 a preference of 0.4 (e.g. due to a difference in the
accuracy of the machines.). There may also be several human operators available with different
utilities.

The global utility of a schedule is obtained by summing all the preferential constraints' utilities
(for the given schedule).

2.1.3 An Example
We now introduce a simple scheduling problem that we will use throughout this paper.

The problem involves scheduling two orders: order, and order2 (Figure 2-2):

* order, comprises five activities: A1, A2 ... ,A 5,

* order2 comprises three activities: A6 , A7 , and A8.
All activities have the same duration, namely 30 time units. C 1,C2.... C7 are the temporal
relation constraints imposed by the process planning step. For instance, C1 indicates that A1 has
to precede A2. The domain comprises three physical resources: R , R2 , and R3.

" A1 requires a resource R11 which can be either R1 or R2 (with equal preference), i.e.
UR1 (Rl)=uRll(R 2)= 1, and URI I(R3)=0.

* A2 requires a resource R2 1 which has to be R 1, i.e. uR2 (Rl)=l, and

UR21 (R 2)=UR21 (R 3)=0.

12

* A3 requires a resource R31 which has to be R2 , i.e. uR3 (R2)=l, and

UR31(R)=UR31 (R3)--0.

* A4 requires a resource R4 1 which has to be R2 , i.e. UR41(R 2)=l, and
UR41(RI)=UR41(R 3)-- 0 -

* A5 requires a resource R5 1 which has to be R1, i.e. up,,(R 1)=l, and
Ulpj(R 2)--URs(R 3)=0.

* A6 requires a resource R which has to be R3 , i.e. Ul6,(R 3)=l, and
UR61(R)=uR6 (R2)=0-

* A7 requires a resource R7 1 which can be either R2 or R3 (with equal preference), i.e.
UR71(R 2)=uR7,(R 3)= 1, and URTI(R1)= 0 .

o A8 requires a resource R8 1 which has to be R3, i.e. URs (R3)=l, and
uRl (Rl)--uR. (R2)=0.

or-der,

A 2C3

order 2

C,: A , BEFORE A 2

C2: A 2 BEFORE A 3

C3 : A 3 BEFORE A 5

C4 : Ai BEFORE A 4

C5 : A 4 BEFORE A 5

Q: A 6 BEFORE A,

C,: A, BEFORE A

Figure 2-2: TCG for a two order scheduling problem

Activities in order, (i.e. AI,...,A 5) are assumed to have the same start time utility function.
The function requires that these activities start between time 0 and time 140, with an optimal
start time at 120 (Figure 2-3). Time 0 can be interpreted as the order release date. Time 140 + 30
=170 (latest-start-time + duration = latest-finish-time) could represent the time after which the
client would refuse the order.

13

fIutility tutility0

u.-'t I I I I. Y I I t Y

0 : 0

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

time time
order order

I 2

Figure 2-3: Start time utility functions

All activities in order2 will be assumed to have a uniform start time utility between 0 and 120
(Figure 2-3).

In general preferential constraints are set independently to one another and may therefore be
incompatible. For instance, it will obviously be impossible to simultaneously schedule both A2
and A3 at their optimal start time, namely 120. Therefore instead of a priori preferences, one
needs (a posteriori) preferences indicating values that are likely to result in a good schedule
overall. Such preferences can only be obtained by accounting for constraint interactions. This is
the objective of the propagation technique presented in this paper.

Looking more closely at our example, one notices that there are four activities requiring
resource R2: A1, A3, A4, and A 7.Out of these four activities, up to three can occur in parallel,
namely A3, A4 , and A7 . These activities will therefore compete for the possession of R2.There is
no such competition for R1 and R3 as the activities that require these resources are fully ordered
temporally (e.g. A1 has to be carried out before A2). The scheduling of R2 is therefore more
critical than that of R1 and R3 . An incremental scheduler should first focus its attention on the
competition between A3, A4 , and A7 for R2. Moreover, since A7 has two resource alternatives
(R2 and R3) while A3 and A4 have only one, and since A3 has less slack than A4 , we would like
our incremental scheduler to first schedule A3 with R2

7 .

A more detailed analysis confirms that first scheduling A3 rather than A4 is the right decision.
It also reveals the influence of the preferential constraints (in this case the start time preferences)
in determining activity criticality. We consider two scenarios: one where the first activity to be
scheduled is A4 (scenariol) and one where it is A3 (scenario2). Given that A5 cannot start later
than 140 and that A3 and A4 have a duration of 30, A 1, A2 , A3 , and A4 cannot start later than
110. Hence, according to their start time utility functions, these activities will prefer to start as
late as possible (Figure 2-3). In scenariol, A4 is the first activity to be scheduled. It is scheduled
as late as possible (while still leaving some room for A5 to have a good schedule), say at time 90.
Since both A3 and A4 require R2, A3 has to be scheduled before A4 . The resulting schedule is the

7Notice that we are assuming an incremental scheduler whose reservations are nonpreemptible. The order in
which activities are allocated resources would not matter if allocations were preemptible. Most predictive
schedulers do not allow for such preemptions as they tend to produce infinite loops if one does not take special
precaution.

14

sequence At , A2 , A3, A4, and A5 , as displayed in Figure 2-4. Altcrnatively (scenario2) suppose
that we decide to first schedule A3. This time A3 is scheduled to start at time 90, and A4 has to
occur before A3 . However A2 and A4 can occur in parallel before A3 (Figure 2-5). Hence,
globally, A1 to A4 start later in scenario2 than in scenariol. In other words, scenario2 results in
a higher global utility than scenariol.

Our approach to preference propagation formalizes the above considerations.

: ~~~~~~~~.....4 :I :,: . :. -

I I I i I I I I I I I I I I

0 10 20 30 4C 0 60 70 0 9C0 100C 110 1-01 14 , 15¢,

Us1 (O) +Us2 (30) + ust3 (6 0) + us,4 (90) + ust5(120) = 2.5

Figure 2-4: Gantt chart for a schedule of orderl obtained with scenariol.
The global Start time utility has been obtained by adding the start time

utility of the five activities.

R2
4 ""3

I I I I I I I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150

Usti (30) + ust 2(60) + ust3 (90) + u,,4(6 0) + ust1 (120) = 3.0

Figure 2-5: Gantt chart for a schedule of orderl obtained with scenario2.
The global start time utility has been obtained by adding the start time

utility of the five activities.

2.1.4 Organization of the Paper
In the next section we give an overview of related work in constraint satisfaction and

scheduling. Section 3 introduces the assumptions that are the basis to our probabilistic approach
to preference propagation and gives an overview of the approach. Section 4 describes the
propagation of start time and duration probability distributions in TCGs. As already mentioned

15

earlier, when one is simply concerned with knowing whether two time intervals are temporally
related or not, a TCG can be considered as an undirected graph. When we will be talking about
cycles in the TCG, we will always be referring to the undirected interpretation of the graph.
Subsection 4.2 deals with acyclic TCGs with fixed-duration activities. Subsection 4.3 relaxes
the fixed-duration hypothesis. Subsection 4.4 relaxes the acyclicity assumption. Subsection 4.5
discusses propagation in general TCGs where there are explicit disjunctions of temporal relation
constraints. Finally subsection 4.6 analyzes the results of the section with respect to a set of
requirements and desiderata identified in subsection 3.2. Section 5 explains how the results of
the previous section can be combined to obtain measures of resource contention and activity
resource reliance. In section 6, we discuss the time complexity and the expressiveness of our
framework as well as possible improvements. Section 7 summarizes the main ideas of the paper.

For the sake of concision, subsections 4.2 and 4.3 contain only the treatment of two temporal
relation constraints (BEFORE, and MEETS). Formulas for the complete set of Allen's temporal
relation constraints is presented in appendix 1. For the same reason, section 5 only sketches the
computation of resource demand densities. The reader will find a complete treatment of these
densities in appendix 2.

2.2 Related Work
We already mentioned that this paper does not deal with process planning. Hence it is

assumed that the TCGs to be. scheduled are consistent. [Vilain 86] has proved that consistency
checking in a general TCG is NP-hard. Several algorithms have been proposed in the literature to
perform partial or total consistency checking in a TCG. Allen's algorithm [Allen 83] achieves
3-consistency 8 in a general TCG in polynomial time and space. A complete consistency
checking algorithm using a variation of data dependency backtracking is presented in
[Valdes-Perez 87]. Although the algorithm is designed for quick pruning, its asymptotic
complexity remains exponential. [Vilain 86] and [Tsang 87] point out that consistency checking
can actually be performed in polynomial time provided that the TCG does not contain certain
types of disjunctive relations such as "Interval, has to be either BEFORE or AFTER Interval 2".

When additional constraints such as capacity constraints, preferential start time constraints,
preferential duration constraints, preferential resource constraints, or resource reservations are
added to a consistent TCG, the resulting CSP may stop being consistent. These are the types of
inconsistencies that we ,will be referring to later in this paper. Consider the simple example
depicted in Figure 2-6. There are two activities: At and A2. A, is BEFORE A2 . A, has a
preferential start time constraint specifying that it has to start between 10 and 15. A2 's
preferential start time constraint specifies that A2 has to start between 0 and 5. A,'s duration is
10. A2's duration does not matter. The resulting CSP is obviously inconsistent (unsatisfiable) as
A 's earliest end time (10+10=20) is after A2's latest start time (5).

Propagation of activity start and end time windows (earliest/latest start and end times) dates
back to the CPM algorithm [Johnson 74]. The PERT method generalizes CPM by allowing for

8According to [Freuder 82b], a constraint graph is k-consistent if for any set of (k-1) variables, any consistent
assignment of values to these (k-1) variables, and any k-th variable, there always exists a value for the k-th variable
such that the k values taken together (i.e. for the (k-l)+l variables) are consistent.

16

C,

A,

du,
A,' endtime

A, 's start time window

window
Al's start time
window

I I I I I I

0 5 10 15 20 25

C,: A, BEFORE A 2

du ,: A, 's duration

Figure 2-6: An inconsistent CSP with a consistent TCG

uncertainty in activity durations. [Vere 83b] adapted the CPM propagation techniques to a
planning system called DEVISER. In DEVISER start time windows are described as triples of
the form (earliest-start-time, ideal-start-time, latest-start-time). The ideal start time information
is optional. A start time triple can be seen as a triangle-shaped 9 start time utility function (Figure
2-7). When the ideal start time is omitted, the window can be interpreted as a rectangle-shaped
start time utility function. In DEVISER start time windows are dynamically compressed to
accourt for new temporal relations and activities introduced during the planning process. The
compression does not account for ideal start times which remain fixed. DEVISER is able to
handle both BEFORE/AFTER and MEETS/MET-BY relations. Because preferences are not
propagated, the system performs poorly when it has to select a start time within a compressed
window: the selection is based on purely local information.

A variation of Vere's algorithm is presented in [Bell 84] that accounts for variable duration
activities. [Smith 83b] extends Vere's approach by also accounting for DURING/CONTAINS
temporal relation constraints (see also [LePape 87]). Smith's temporal module also allows for the
propagation of resource reservations over T/CCGs. [Rit 86] describes a Waltz algorithm to
propagate generalized temporal windows over TCGs. A generalized window is the composition
of a start time, end time, and duration window (Figure 2-8). The method accounts for all 13 of
Allen's temporal relations as well as for disjunctions among these relations. In the general case,
Rit's algorithm is only guaranteed to achieve arc-consistency [Mackworth 77b]. Total
consistency can however be guaranteed in TCGs that do not contain disjunctions of temporal
relation constraints.

None of the propagation techniques that we just described handles preferences. In practice,
however, different times within a window are not equally preferred. For instance, in the factory
scheduling domain, due dates and associated late delivery penalties induce preferences on

9This is not the only possible interpretation.

17

Case liii' al Ide l Case \villoll Idel
Start11" I IIIC st r l' limeII

k liI 3

0 0
est ist 1st est Ist

time time

est: earliest start time
st: latest start time

ist: ideal start time

Figure 2-7: A utility interpretation of DEVISER's start time windows
ct

let

st: start time
et: end time
est: earliest start time

Ist: latest start time
eet: earliest end time

eet let: latest end time
forbidden md: minimum duration
rMd: maximum duration

0 est Ist st

Figure 2-8: Rit's generalized window

activity end times (and hence start times). Inventory costs are another source of start time
preferences. In general preferences cannot be accounted for independently. Selection of the
optimal start time for one activity may prevent selection of the optimal start time for another
either because of temporal relation constraints between the two activities or because of capacity
constraints, or a combination of the two. This is why it is crucial not only to propagate time
windows but also to propagate preferences over these windows. Window propagation simply
guarantees admissibility of the values within a compressed window. Preference propagation
strives not only for admissibility but also for optimality by locally reflecting preference
interactions.

Our purpose is to develop preference propagation techniques to guide an incremental
scheduler. Both empirical and analytical studies reported in fHaralick 80, Freuder 82b, Purdom

83, Nadel 86b, Nadel 86c, Nadel 86d, Stone 86] indicate that, in general, the amount of search
required to find a solution to a CSP can be significantly reduced by using the following two
look-ahead schemes [Dechter 88]:

1. Variable Ordering: Focus on the most constrained variables first.

2. Value Ordering: Try the least constraining values first.

Tightly constrained variables and constraining values are determined by the interactions of the
problem constraints. In CSPs where variables have finite sets of possible values and all values
are equally preferred, the number of possible values left after constraint propagation (i.e.
consistency checking) can be used to determine variable tightness/looseness. In problems where
values are not equally preferred, like in the scheduling domain, this is not sufficient. One has
also to account for value goodness, i.e. the utility of a value and the impact of selecting that
value on the availability of good values for the other variables. Our notion of value goodness

and our generalization of the notion of variable looseness are intended to allow for the
generalization of these two look-ahead strategies to CSPs where variables can have infinite
bounded sets of possible values with non-uniform preferences.

[Muscettola 87] presents a probabilistic framework to compute resource contention in
T/CCGs with only BEFORE/AFTER temporal relation constraints based on assumptions on the
order in which the activities are scheduled. This paper extends Muscettola's approach for
computing resource contention by removing the need for assumptions on the order in which
activities are scheduled, by dealing with all of Allen's constraints, by allowing for duration and
resource preferences and by accounting explicitly for earlier resource reservations.

2.3 A Probabilistic Framework for Preference Propagation

2.3.1 An Overview of the Approach
Our purpose is to develop preference propagation techniques to guide an incremental

scheduler. An incremental scheduler works by iterating through a two-phase process. In the first
phase it analyzes the structure of the CSP resulting from the initial scheduling problem and the
decisions that have already been made. In the second phase, based on this analysis, new
decisions are generated resulting in the expansion of the current schedule (e.g. new activities are
scheduled). If the scheduler reaches a deadend, it backtracks. The process goes on until a
satisfactory schedule is produced.

The first phase analysis is performed using preference propagation to dynamically identify
critical decision points. Such decision points are determined by the interactions of the problem
constraints. In the case of the scheduling problem, there are two main types of interactions:
operation precedence interactions and resource requirement interactions [Smith 85].

1. The operation precedence interactions are the ones induced by the TCG. They are
sometimes also referred to as intra-order interactions10 .

2. Resource requirement interactions are induced by the capacity constraints. They
arise from the contention of several activities for the same resource. They are

l°Although activities within a same order can also intcract by competing for the same resources.

19

sometimes referred to as inter-order interactions.
Intra-order and inter-order interactions have respectively motivated so-called order-based and
resource-based scheduling techniques. In the past few years it has become clear that efficient
scheduling requires the ability to combine these two perspectives [Smith 85, Smith 86] so as two
account for both types of interactions. Unfortunately both types of interactions are not totally
independent. Intra-order interactions affect the time intervals over which activities will contend
for resources, thereby influencing inter-order interactions. Resource contention in turn restricts
the times over which activities can occur, thereby influencing intra-order interactions.

In order to deal with the uncertainty in the interactions between uninstantiated variables, we
have adopted a probabilistic model. For each uninstantiated variable, a probability density is
computed for the variable's possible values that indicates the likelihood of each value to result in
a good schedule overall, given the decisions already made by the incremental scheduler. This
probability is a dynamic measure of value goodness. When the corresponding probability density
is normalized, we also interpret this probability as the dynamic probability that the scheduler
assigns that value to the variable.

In its simplest form our approach involves the following steps:
1. Based on the current partial schedule as well as start time, duration and resource

preferences, a priori probability distributions are produced for the start time,
duration and resources of each unscheduled activity,

2. These a priori probability distributions are propagated over the TCG, resulting in a
posteriori start time and duration probability distributions,

3. The a posteriori distributions obtained in the previous step are combined to
compute activity individual demand densities. An activity Ak's individual demand
density at time t for a resource Rki , say Dko #), is defined as the probability that Ak
is active at time t and uses R]ii to fulfill its resource requirement Rki,

4. Activity individual demand densities are combined to measure resource aggregate
demand densities. The aggregate demand density for a resource at time t is the
probabilistic demand for that resource at time t.

Both iterative and hierarchical variations of this basic propagation algorithm will be discussed.

From an Operations Research point of view, activity a posteriori start time and duration
distributions provide a measure of intra-order interactions and a generalization of the notion of
slack [Johnson 74]. Resource aggregate demand densities reflect the level of resource contention
defined by the CSP's inter-order interactions. Resource aggregate demand densities can be
identified with the Operations Research concept of bottleneck analysis [Smith 85, Smith
86, Muscettola 87].

From a constraint satisfaction perspective, a posteriori start time/duration distributions should
be regarded locally as measures of value goodness, and globally as measures of variable
looseness for activity start times and durations. Aggregate demand densities can be interpreted as
measures of constraint contention and individual demand densities as measures of activity
resource reliance.

20

2.3.2 Building A Priori Probability Distributions Based on Local A Priori
Preferences

Our approach uses Bayesian probabilities to estimate value goodness, i.e. the likelihood that a
given value will result in a good schedule overall. It consists in the construction of a priori
probability distributions for each uninstantiated variable based on local preferences. These
probabilities are then refined so as to account for constraint interactions, thereby resulting into a
posteriori probability distributions.

Obviously the main concern in such an approach is to obtain good estimates of value goodness
(desideratuml) as these estimates are essential to both the identification of critical decision
points in the search space and the selection of a decision at these points. There are however
some more specific requirements and desiderata to which one should give special attention.
Indeed, besides its need for good focus of attention mechanisms, efficient search also requires
the ability to quickly prune deadend paths in the search tree.

In our probabilistic framework, unsatisfiability is detected when a posteriori probability
densities are uniformly zero. This indicates that the interactions of the problem constraints have
reduced the set of admissible values for a variable to the empty set. Detecting unsatisfiability in
this fashion requires that:

1. Requirementl: Every value that is a priori admissible 1 lis given a strictly positive
a priori probability, though possibly very small.

2. Requirement2: The propagation step, which combines a priori probabilities to
account for constraint interactions, produces a posteriori probability densities that
are zero only for values forbidden by the constraint interactions.

Requirementl restricts the construction of a priori probability distributions. Requirement2 is a
restriction on the propagation method itself.

Desideratum2: Additionally, in order to detect and prune inconsistent states as soon as
possible, one would like a posteriori probabilities to be zero for all non-admissible values
(complete consistency checking). Unfortunately interactions between the resource requirements
of unscheduled activities seem computationally very expensive to totally account for.
Consequently we will have to settle for partial consistency checking.

These general requirements and desiderata having been identified, we turn our attention to the
construction of a priori probability distributions. We start with some general observations.

In the presence of a unique variable with a single (unary) preferential constraint, one can just
select one of the optimal values defined by the utility function. The probability density for the
variable's value consists of a set of peak distributions (Dirac distributions), each centered
arouna one of the optimal values (Figure 2-9b).

On the other hand, in the presence of several variables and constraints, it is not always possible
any more to simultaneously select an optimal value for each variable. For instance, it is not

I 10f course, a more sophisticated analysis will result in the rejection of a larger number of possible values (see
desideratum2). Therefore what is really important for requirementl is that no value received a zero a priori
probability while it could have resulted in an admissible schedule.

21

(a (b) (c)f u(X) JP(x) P(X)

X pt X XOP(X X opt X

(d) (e)t P(x) f P(x)

X op X opt X

Figure 2-9: A priori probability density P(x) for a variable x with utility function u(x).
This is an example with a single optimal value.

always possible to schedule an activity at its optimal start time and with a set of optimal
resources. Very often one has settle for suboptimal start times and/or resources in order to find a
feasible schedule (i.e. satisfy all the CSP's constraints). If, for a given variable, the interactions
defined by the constraints are weak, it is usually possible to select a value that is still very close
to the optimum (or one of the optimums). As interactions become stronger, it becomes more
difficult to select values close to the optimums: the probability density widens (Figure 2-9c and d).
In situations of extremely strong ifiteractions, one is just happy to find a solution within the
domain of admissibility (non-zero utility value). Hence the probability distribution tends towards
a uniform distribution over the range of admissible values (Figure 2-9e).

The a priori probability densities that we are currently using are essentially obtained by
normalizing utility functions. Intuitively this can be interpreted as a sort of average difficulty
assumption (see Figure 2-9). The resulting a priori probabilities obviously satisfy
requirementl. Moreover, because we assume that domains of admissibility defined by utility
functions are bounded, normalization is always possible.

Prior to normalizing a utility function, its domain is pruned to account for earlier resource
reservations. This improves the quality of the probability distributions with respect to
desideratum2. In particular we remove from the start time probability distributions the start
times that are not allowed by the current resource reservations. A start time t is not allowed for
an activity Ak, if there is at least one resource R required by Ak such that none of the resources
Rkij is totally available between t and t+SA .,, where St, is Ak's smallest admissible duration.

We are currently investigating alternative methods for producing a priori probability

22

distributions. In particular we are investigating both iterative and hierarchical approaches to
preference propagation. In an iterative approach one can use the resource demand densities
obtained by the previous iteration to estimate the probability that a given resource will be
available for an activity at some time t. Using these probabilities, new a priori start time
probability distributions can be obtained and the propagation process can be carried out all over
again. Alternatively, in a hierarchical scheme, one can use the propagation results obtained at an
upper level to compute resource availability estimates. Again these estimates can be combined
with the start time utility functions to obtain a priori start time probability distributions for the
new level.

2.4 Propagating Start Time and Duration Distributions in a TCG

2.4.1 Preliminary Remarks
Now that we have some a priori distributions for the start time, duration (if variable) and

resources of an activity, we can refine these a priori probabilities so as to account for the actual
constraints of the problem. In this section we compute a posteriori start time (and duration)
probabilities that account for the interactions defined by the TCG.

This section is subdivided into several subsections each dealing with the propagation problem
under increasingly more general assumptions. As we already mentioned earlier we view TCGs as
undirected graphs. Subsection 4.2 develops the computation of a posteriori start time probability
distributions in acyclic TCGs with fixed duration activities. In subsection 4.3 the fixed-duration
assumption is relaxed. In subsection 4.4 we relax the acyclicity assumption. Subsections 4.2 to
4.4 all assume that there are no explicit disjunctions in the TCG. The transitivity
properties [Allen 83] of the relations may however induce disjunctions, which are then implicitly
accounted for in the propagation. An example of TCG with no explicit disjunction is represented
in Figure 2-10. The TCG specifies that 1, OVERLAPS 13, and 12 is DURING 13. This implicitly
induces the disjunction 1 (DURING, STARTS, OVERLAPS) 13, i.e. 11 is DURING or STARTS
or OVERLAPS 13. All our calculations allow for this type of implicit disjunctions. On the other
hand explicit disjunctions are more difficult to handle and are quite infrequent in practical
factory scheduling problems. Propagation in TCGs with explicit disjunctions is discussed in
subsection 4.5. Figure 2-11 displays a TCG with explicit disjunctions. Subsection 4.6 interprets
the results.

Notations

* C1, C2,..., Cm will denote the explicit temporal relation constraints that define the
TCG (See Figure 2-10 for an example).

" Ok(stk=t) will denote k's a priori start time probability density, obtained as suggested
in the previous section. t is the variable.

* =k(duk-d) will denote Ik's a priori duration probability density, obtained as suggested
in the previous section. d is the variable. This distribution will only be used for
variable-duration activities.

* P(st= t& C, &C 2 & ... & Cm) (where A, is assumed to be a fixed-duration activity)

23

c2

3

explicit constraint

implicit constraint

C1 : I OVERLAPS 12

C: I DURING 13

C 3: ,{DURING, STARTS, OVERLAPS) 13

Figure 2-10: Example of a TCG with no explicit disjunctions

explicit constraint

C: I (BEFORE, AFTER) I2

Figure 2-11: Example of a TCG with explicit disjunctions

will denote Ik's a posteriori start time probability density. This density (with
variable t) corresponds to the a posteriori probability that Ak starts at time r (i.e.
Stk=t) and that the temporal relation constraints C1, C2 ,...,Cm are satisfied.

*P(stk=t&du=d&C1&C2 &...&C.) (where Ak is assumed to be a variable-
duration activity) will denote the two-dimensional joint a posteriori probability
density of Ik's start time and duration. This density (with variables t and d)
corresponds to the a posteriori probability that Ak starts at time t (i.e. stk=t) and has
duration d (i.e. duk=d) and that the temporal relation constraints C,, C2, ..., C.. are all
satisfied.

In order to avoid the accumulation of parentheses in iterated integrals, we adopt the usual
convention tnat:

24

.At)dQ h(1J)dTJ denotes

We will also be using the following functions:
* oa(predicate) is a function that returns 1 when predicate evaluates to true and 0

otherwise
12.

* P3[EQI()]. where EQI() is a linear equation in 4, is a distribution 13 such that:

L PI [EQ (11g() d
=a[L <x < U]g(x) if x is the unique solution to EQI(t),

=f g() dA if EQ1 (t) holds for V , and

=0 if EQI(t) is inconsistent.

This simply expresses that the integration variable 4 is not only restricted to values
between L and U but that the values it can take should also satisfy the linear
equation EQI(t).

* More generally [where EQ,(<1,...,t,)(for i=1 to /) is
a linear equation, is a distribution such that:

LITf U d ,. U ,,U t Q (.. ,).. E I(I...) [.. ,]d ,

l1
L2 . fLnL U tL, < F (tk,,+,,..t,) < U,]..atLk_ <F-' (tk,. . ,,

'Lk * Lk+ I Ln

if the system of linear equations is consistent and equivalent to:

='4 k+In

4k_,=Fk-l(k, k* Q (k-I1)

=0 if the system of equations is inconsistent.

2.4.2 Propagation in an Acyclic TCG with Fixed-duration Activities
In this subsection we express the a posteriori probability density P (st o = t & C, & C2 &... & Cm)

for the start time of an arbitrary time interval 10 in terms of the a priori start time distributions 14 .
We assume fixed-duration activities arranged in an acyclic TCG.

We denote by 4, 1, ..., 10 the intervals directly adjacent to 1o in the TCG (Figure 2-12).
p0

12The reader who is not familiar with this formalism can think of it as a convenient way of expressing IF-
statements in mathematical formulas.

13Our 03 distribution is a variation of the Dirac distribution. The reader who is not familiar with this formalism can
simply look at it as a convenient way of expressing constraints on the values that an integration variable can take.

14I0 is an arbitrary element of (11, 12. .

25

CO (1 < i po) is the temporal constraint between Io and V. Each time interval 1. (1 < i - po) is

itself related directly or indirectly to some other time intervals by a set of constraints So. The

sets S0 are disjoints as the TCG is assumed to be acyclic (Figure 2-12).

00

2C

0

Figure 2-12: An Acyclic TCG.

The time interval l0 is related to , ... , '
by respectively Co, CO, C .

Since the TCG may be disconnected, which is the case when there are several independent
orders to schedule, we have:

and m < n - 1 (number of edges in an n-vertex tree).

We will express the (a posteriori) probability that 10 starts at time t and that the constraints C1 ,
C2 ,..., Cm are satisfied in terms of

" the a priori probability that 10 starts at t, and

" the probabilities that each time interval li (1 < i<Po) has a start time compatible

with C2i given that st0 =t.
These latter probabilities can be expressed in a similar fashion, thereby resulting in an inductive
formulation of the a posteriori start time probabilities. The inductive formulation process stops

26

when all related time intervals have been accounted for (or more precisely their a priori start time
distributions). At that point we have an expression of the a posteriori start time distribution that
only contains a priori start time distributions, i.e. distributions that we know from the previous
section.

Indeed, the a posteriori probability that sto=t and that the temporal relation constraints C1,
C2 Cm are satisfied is given by 15 the a priori probability that I0 starts at time t, denoted
o0 (st0=t), multiplied by the conditional probability that C1 , C2,..., Cm are satisfied, given that

sto=t, denoted P (C1 & C2 &. .. & C,I sto =)):

P(Sto = t&C 1 &C 2 &... & C)= (to(St=t) XP(C l &C2 &.. &C.sIt =t) (2)

with t being the distribution variable.

Furthermore, assuming I0's start time fixed at time t, the satisfaction of the constraints

{C5j' us is independent of the satisfaction of the constraints (C) uS0 (for i j), since we are
dealing with an acyclic TCG. Hence:

P0

P(Ci&C2 &...&C, Sto=t)= I[P(C &SSt0=t) (3)
i=l

where P(C7 & So Isto = t) is the conditional probability distribution that C? and the constraints in

So are satisfied given that sto = t (with t being the distribution variable).
Using (3) we can now account separately for each constraint C?. We will express each

multiplicand, P(C. &SIIsto = t), in terms of P (st? = & S), the probability that i- starts at some

time (to be defined) and that the constraints in So0 are satisfied. Consequently equations (2) and
(3) will enable us to express P (sto = t& C1&C 2&... &Cm) in terms of probabilities of the form

P(st° = &e), i.e. probabilities of the same form as the original probability

P(Sto =t&C&C2 &... &C) except that So is only a subset of (C1, C2,...,Cm). By recursively
repeating this process, we will be able to account for all the temporal relation constraints. The
recursion process stops when Si gets empty since at that point
P(stri = - & i) = P(st9 = t) = o?(st? = r), 1's a priori start time density.

Paragraghs 4.2.1 and 4.2.2 develop the computation of P(Ci&SIst0 =t) in terms of

P(sti = & S) = oai(sti=,r)P(S'IsId---) in the case where Ci is respectively of the form "10
MEETS I.", and "10 BEFORE 17'",. The treatment of the set of all thirteen of Allen's temporal
relation constraints can be found in appendix 1.

2.4.2.1 CO: I0 MEETS I
The constraint "J0 MEETS 4" requires (Figure 2-13) that J0's end time be equal to 4's start

time, i.e. it requires that eto=sto+duo=St?. In other words, assuming that sto=t, the probability that

C? and the constraints in So are satisfied is equal to the probability that st?=t+duo and that the

15 P(A &B) = P (A) x P(B IA): the joint probability of two events A and B can be expressed as the product of the

probability of event A with the conditional probability that B occurs given that A is assumed to occur.

27

1 I0
0a

du I I

du0

0

s t o eto= st,

time

Figure 2-13: 1o MEETS i0,

constraints in So are satisfied:

P(C7,&S7 Isto =t) =P(st° =t+duo&)

= oi(st = t + duo) P(s It = t + du) (4)

2.4.2.2 CO: Io is BEFORE I?

0

10 Ii

i du o i

S to e to s t

time

Figure 2-14: Io BEFORE I

The constraint "Io BEFORE 1i" requires (Figure 2-14) that t0's end time be smaller than 40's

start time, i.e. it requires that et0 =st0 +du0 <sti. In other words, assuming that Sto=t, the

probability that Ci and the constraints in So are satisfied is equal to the probability that

st° > t+du0 and that the constraints in So are satisfied:

P(Cl& sISto = t)= " P(st° = &) d -

8du

o

28

-J (=)P(SiI st=T) d (5)

2.4.2.3 Example
We use the three activities of order 2 (Figure 2-2) to illustrate the computations that we have

just developed. We have:

P(st6=t&C 1&C2&...&C 7)
=P(st6 =t&C6 &C7)

= 6(st6 =t) P(C 6&CT I st6=t)

=(-6(st6 =t) fl, a 7(st7=r7) P(C 7 I st7='T) dE7

= 6 (sr6=t) J - 0 7(St7=T7) dt7 + 8(St8=' 8) dt 8 (6)
fl+d. 6 '7 du7

Also, using thz "ormula given in appendixl to account for "17 AFTER 16":

P(st7=t&C I&C2& ... &C 7O

=P(st7=t&C6&C7)

=-7(St7 =t) P(C 6 &C7 I st7=t)

=(7(stT=t) P(C 6 I st7=t) P(C 7 I st7=t)

Yo7 (st7=t) - u6G6 (st6 ---T6)dr 6 0(S t8(sts---8)d 8 (7)

Finally, in the same fashion:

P(st8 =t&C I&C 2 &.. .&C 7)

=P(st8 =t&C6&C 7)

=o8(St8 =t) P(C 6&C7 I sts=t)

=Y8(st8 =0 f'- u4
7 (st7---7) P(C6 [st7='T7) d 7

=c 8(St8=) J'7 Y7(StT---T7) dt7 f1-a'7 6(S 6 --' 6) If 6 (8)

We assume that the resources are initially free (i.e. no priori resource reservations). Therefore,
since activities A6 , A7, and A8 have uniform start time utility functions, their a priori start time
densities are uniform as well, and span between times 0 and 120. Figure 2-15 displays the a
posteriori start time densities computed using these a priori densities. Since in this case the start
time utilities are uniform, the most preferable start times for each activity are the ones that leave
the most freedom to the other activities for satisfying the temporal constraints C6 and C7.For
instance, A6 's a posteriori start time density indicates that A6 should start as early as possible in
order to leave as much room as possible to A7 and A8

16. As we will see in the example of

161t is important at this point to bear in mind that we have not yet accounted for resource capacity constraints. In
particular we do not know the effects that these constraints will have on the domain of possible start times for A7
and A8 . Hence, at this point, the best start times are the least committing ones with respect to the temporal
constraints.

29

subsection 4.4, the propagation of nonuniform start time utility functions such as the ones of the
activities in order1 are influenced by a second factor. In addition to looking for start times that
leave a lot of slack to the other activities that have not been scheduled yet, the propagation of
nonuniform utilities gives a higher preference to higher utilities. The a posteriori distributions
thereby reflect a compromise between the utilities to optimize and the need to leave enough
room for selecting good start times for the other activities that have not yet been scheduled.

o 07 - A6 posterior start time probability density
0.06oo

S0.05

0.04
0.03

.0 0.02
0a" 0.01

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

aw -~ start time
.07_ A7 posterior start time probability density0.06r

0.05
0.04

.0 0.02

12 0.01
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

a 0 -08 start time

0.07 A8 posterior start time probability density
Cu0.06

0.05

.00.02

0.01
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

start time

Figure 2-15: A posteriori start time densities for order 2

2.4.3 Propagation in an Acyclic TCG with Variable-duration Activities
In the case of variable-duration activities, one can compute for each activity a tw;o-dimensional

joint a posteriori probability density of the activity's start time and duration. This density, of the
form P(sto =t&duo =d&C & C2&...&C,,,), represents the probability that sto=t and duo=d and
that all the temporal relation constraints are satisfied given the activities' a priori start time and

30

duration distributions. The integrals involved in the computation of these distributions are very
similar to those of the previous subsection, except that we now have to account for the a priori
duration distributions.

The equivalent to equations (2) and (3) are:

P(sto =t&duo=d&C&C2 & . ,,&,) = . (sto = t) x80(duo=d) x

P (CI & C2&... &CIsto = t&du0 = d) (9)

with:

P0
P(CI&C 2&.."&CIsto = t&duo=d)= jI P(C7&Slsto=t&duo=d) (10)

i=1I

Paragraghs 4.3.1 and 4.3.2 develop the computation of P(C~i&SIsto = t&duo =d) in terms of
P(st°=c&duo=8&7) = a(st=)8(du°=5)P(s'Ist°---&du°=8) in the case where C'7 is
respectively of the form "10 MEETS I'", and "10 BEFORE It",. The treatment of the set of all
thirteen of Allen's temporal relation constraints can be found in appendixl. Exactly like in the
previous subsection, one can use these equations in a recursive fashion to express the a posteriori
start time and duration densities in terms of the a priori ones.

2.4.3.1 C': Io MEETS 1
As before, the constraint 'Jo MEETS j" requires (Figure 2-13) that /0's end time be equal to

4I's start time, i.e. it requires that eto=sto+duo=stoj. Hence, assuming that sto=t and duo=d, the
probability that CO and the constraints in So are satisfied is equal to the probability that st?=t+d
and that the constraints in So are satisfied:

P(C'i &SoI Isto= ,&duo=d) = P(sti =t +d&So)

f Jo8°(du° = 8) ao?(sti = t + d) P(S I st° = t + d&du? = 8) d5
0

= J 8(duo--8)d5 ron (,c=t+d) (st--)P(S JisA--t & du=8)dr (11)

The first equality is the most natural one. We will however use equation (11) in the next
subsection, when allowing for cycles in the TCG.

2.4.3.2 C': 10 BEFORE f
In the same fashion, if 10 has to be BEFORE I?, one has:

P(Ci & SoIsto = t &duo =d)

= 0) (duo = 8)d5 J aoO(st ° =,) P(SoI st ° =, & duo = 8)d, (12)

31

2.4.4 Relaxing the Acyclicity Assumption
We now turn our attention to the case where there may be cycles in the TCG. Equation (9) still

holds but the computation of P (C1 & C 2 &... & Cm Isto = t &du0 = d) becomes more complex.

P(CI&C 2&...&Cmjsto = t&duo=d) is the probability that C,, C2, ..., C. are satisfied when
sto=t and duo-d given the activities' a priori start time and duration distributions. The set of
temporal relation constraints (C,, C2, ..., Cm) can be expressed as a set of linear equalities and
inequalities (e.g. I i BEFORE Ij is equivalent to sti+dui < st). This set of equalities and
inequalities together with the conditions sto=t and duo=d defines a polyhedron in the 2(n-1)
dimensional space generated by st, s4, ..., st. 1 , du*, du, ..., du. 1 7. The volume contained in
this polyhedron is the domain of admissible values for st1 , st ..., st, du, du2, ..., du*-, given
the TCG and the conditions st0=t and du0=d (independently of the a priori start time and duration
distributions). Therefore P (C, & C2 &. .. & C. I Sto = t &duo = d) can be obtained by integrating the
multivariable probability density

)(St . t,_ (du=)(2)_ - over this volume. In

this subsection we explain how to effectively build this multiple integral as an iterated integral.

Notice that, according to Fubini's theorem (see [Thomas 83] for instance), there are [2(n-1)]!
correct ways to express a 2(n-1)-tuple integral as an iterated integral (each corresponding to a
permutation of the 2(n-l) integration variables). The algorithm that we present builds one of
these [2(n-1)]! iterated integrals. Although all the iterated forms are theoretically equivalent,
some result in faster numerical evaluation than others 18 . The algorithm that we describe gives
one way to build these integrals. The integrals can then be rearranged in order to speed up their
evaluations. We will not be concerned here with these implementation details.

Consider again the TCG associated to order 2 in the example of subsection 1.3 (Figure 2-16)19.

As we saw in equation (6):

P(C6&C7 Ist6 = t) = f* a7(st7=.7) dT7 fJ a(st 8--x) dt (13)

Alternatively, we can start integrating on st., which produces:

"8-d- 7P(C6&C7 I st6 =t) = f-os(st,---T,) (,(X-du 7 > t + du6) d-r f-o(st- 7) dS7

08(st 8)-- dT8 d7(StT=r7) dt 7 (14)ftt+,du6+du7 "It+du6

where a(ts--du7 > t+du6) simply expresses that the second integral's upper bound has to be

17Where (, 1;. I4. I-. = (I, 12' .. , .1 0 being an arbitrary time interval of the set, as in the previous
subsections. The "*" simply indicates that the time intervals have been reordered.

18Some iterated forms are also easier to solve analytically than others.

19One of the reasons for chosing this example is that the domain of integration can be visualized in 2-D.

32

C: 1 BEFORE 17

C: 1, BEFORE I

T

du 7 du 7

t+du 6 17 t+du 6 T7

T t + du 6 + du

domain of integration in (13) domain of integration in (14)

Figure 2-16: Illustration of Fubini's Theorem in a TCG with 3 Time Periods

greater than its lower bound (since we are integrating probability densities). Figure 2-16
represents the domain of integration of both form (13) and (14). They are obviously the same,
which illustrates that both forms (both iterated integrals) are equivalent. Besides its illustration
of Fubini's theorem, this example shows how to account for several constraints at the same time
when determining a variable's domain of integration: in (14) the domain of integration of st7 is
determined by the two constraints C6 and C7. In this example C6 determines the lower bound of
the integral and C7 the upper bound. The simplicity of the formulas in the previous subsections
was coming from the fact that it was possible to order the integration variables so as to account
for only one constraint at a time. In TCGs with cycles it is generally not possible to find such an
ordering. The domain of integration of a variable is usually determined by several constraints,
some affecting the lower-bound some the upper-bound. The actual lower-bound will therefore be
given by the maximum of the lower-bounds produced by each constraint (i.e. the most restrictive

one) and the actual upper-bound by the minimum of the upper-bounds produced by each
constraint. Additionally one has to ensure that the lower-bound is smaller than the upper-bound
(see ax function in (14)) since we are integrating probability densities.

Order, (Figure 2-2) in subsection 1.3, is an example of a TCG with cycle where the integration
bounds of some start times are obtained by taking the minimum or maximum of the bounds

31

produced by several constraints. For instance:

P(C&C 2 ...&Cs I st 1 =2---)dT-2 Jtd.1 0(st4---T4) dO-J

f J 3(st3=r3) dT3 f ** a 5(st5 ---t 5) dr5 (15)
T2+du 2 ('E Ma{ +d" 4)4

As suggested by the above example, the procedure for building iterated integrals to compute a
posteriori probability distributions in TCG with cycles is just a generalization of the formulas
given in the previous subsections. The main differences come from the fact that it is not possible
anymore to find an ordering of the integration variables that would allow for accounting for only
one temporal relation constraint at a time. We just saw how to combine the lower-bounds and
upper-bounds imposed by different temporal constraints. Before describing a general procedure
to effectively build a posteriori probability integrals, we still have one detail to consider. Some of
the formulas given in the previous subsection include 3 distributions (see also appendixl). For
instance P'(,t=t+d) in (11) expresses that st ° should be equal to t+d in order for I0 to meet I?. 3
distributions provide an easy way to formally handle all temporal relation constraints in the same
fashion, i.e. with integrals over the duration and start time of each time interval. P3 distributions
allow for expressing equalities involving integration variables. When several constraints
involving P distributions affect the same time interval, one has to make sure that the values for
the interval's start time (or duration) that they each require are compatible. This is accomplished
by using the following rule (which can easily be verified using the definition of 13 distributions):

foonmint[t ,Et."Et Ean, Al)d...d ,,

(16
=Lfo,,ain P I+[EQl EQ,,,,,] g(&...,kn) d ,..d , (16)

This is illustrated by the example below.

The TCG represented in Figure 2-17 involves 3 time intervals (with variable durations),
namely 1,, 12. and 13. The temporal relation constraints are:

* Cl: 1, STARTED-BY 12,

" C2: 11 CONTAINS I3. and

" C3:12 MEETS 13.

Using equations (39), (41), (35) (see appendix), and (16) one can write:

P(C &C2&C3 1stl=t&dul=d) = fo 53(du3=3)d 3 Gt+-f 3

M In*g _ -. d Min{+*.+*-1
(.0 1 J (dU2=E2)dF fMxU-, 132(C2 =t T 2='r 3 -e2)G2(St 2-T 2) d 2

This formula can be simplified using the definition of 13 distributions:

34

C: I1 STARTED-BY 12

C 2 : I, CONTAINS 13

C 3: 12 MEETS 13

I I
2 3

III

time

Figure 2-17: A TCG with 3 Time Periods

P(C,&C2&C3 I s,=t&du,=d)

=oa(du3=F)dF J'4* F33(t 3=T3)C(0 < T-t <d) 52(du2=t3-t) 0 2(st2=t)dr

= d +d-3a (s3=t 3) 82(du2=T, -) dt 3

To conclude this subsection, Figure 2-18 gives a description of BUILD-A-POSTERIORI-
PROBABILITY-EXPRESSION, a general procedure to effectively express
P(C....CIst0=t&du0=d) as an iterated integral. The body of the procedure makes use of a
couple of simple functions, of which we only give an informal description:

" adjacent(l, TCG): returns a list containing the time intervals adjacent to I in the
TCG, I being itself a time interval.

" pop(list): removes the first element from list and returns it.

" index(I): returns the index (i.e. subscript) of I, where I is a time interval (e.g.
index(12) returns 2).

" intersection(list,list2): returns a list containing the elements of list, that are also in
list2 (the order of the elements in the result list is arbitrary).

35

" union(listI,list2): returns a list containing any element that is either in list, or list2 (or
in both). An element appearing in both list, and list2 is returned only once.

" list-difference(list,list 2): returns a list with the elements of list, that are not in list2.

" start-ti me-upper-bound-expression(1, list): I is a time interval, and list is a list of
time intervals adjacent to I in the TCG. The function returns the start time upper-
bound expression resulting from the temporal relation constraints between I and the
time intervals in list. As explained earlier in this subsection, this is expressed as the
minimum of the upper-bound produced by each constraint.

" start-time-lower-bound-expression(l, list): same as above. The lower-bound is
expressed as the maximum of the lower-bound produced by each constraint.

* duration-upper-bound-expression(1, list): same as above for the duration
(minimum).

" duration-lower-bound-expression(l, list): same as above for the duration
(maximum).

* beta-expression(l, list): combines the eventual 03 distributions resulting from the
temporal constraints between I and the time intervals in list, as explained earlier in
this subsection. If there are no 03 distributions the function simply returns the empty
expression.

" append(expression,, expression2): appends the two expressions together.
We use E and nil to respectively denote the empty expression and the empty list. The procedure
builds the iterated integral from left to right by successively visiting each time interval that is
directly or indirectly related to Io. LOCAL-EXPR contains the integrals over the start time and
duration of the time interval currently visited. This local expression is appended to the right of a
current partial expression of the iterated integral, thereby resulting in a new partial expression.
Intervals that have been visited (i.e. whose start time and duration a priori densities have already
been integrated in PARTIAL-EXPRESSION) are marked. Integration bounds for a time interval's
start time and duration are determined by the temporal relation constraints between that time
interval and the adjacent time intervals that have already been marked.

As illustrated in the previous examples, the expressions produced by this procedure can be
simplified using the definitions of a functions and 03 distributions. The integration bounds can
also be refined to account for the very domain over which the probability densities are strictly
positive. Finally the order of integration can be rearranged to speed up evaluation. A time
complexity analysis of the method and a discussion of available methods to evaluate the integrals
are given in section 6.

Figure 2-19 illustrates the operation of the procedure in the construction of the iterated integral
in (15). Notice that the ax expressions have been omitted as they trivially evaluate to 1.

Figure 2-20 displays the a posteriori start time densities of the activities in order1 , assuming no
prior resource reservations. The start time utility functions are the ones described in subsection
1.3, triangle shaped utility functions allowing for start times between 0 and 140 with a peak in
120. One should notice the difference with the propagation of the uniform start time utilities of
order2 (Figure 2-15). For instance in the case of A5, the a posteriori density was not totally
pushed to the right. Instead the density peaks at 130, which is a compromise between the optimal

36

procedure BUILD-A-POSTE-RIORI-PROBABILITY-EXPRESSION (1o , TCG)

INERVALS-TO-BE-PROCESSED <-- adjacent(I0, TCG);
PARTIAL-EXPRESSION 4- F-;
MARKEDIN-TERVALS (--1)

a list containing Io
while INTERVALS-TO-BE-PROCESSED # niil

I +- pop(LNTERVALS-TO-BE-PROCESSED);
i +- index(I) ;
RELATED-INTERVALS 4- adjacent(I, TCG);
INTERVALS-TO-ACCOUNT-FOR 4-

intersection(MARKED-ITERVALS, RELATED-INTERVALS);
SUB 4-start-time-upper-bound-expression(I, INTERVALS-TO-ACCOUNT-FOR) ;
SLB 4-start-time-lower-bound-expression(I, IN,4TERVALS-TO-ACCOUNT-FOR) ;
DUB 4-duration-upper-bound-expression(I, INTERVALS-TO-ACCOUNT-FOR);
DLB 4-duration-lower-bound-expression(I, INTERVALS-TO-ACCOUNT-FOR);
B3ETA 4- beta-expression(I, INTERVALS-TO-ACCOUNT-FOR) ;
LOCAL-EXPR <-- t(DuB >DLB)JlxB, dui=zF-)a(SuB >SLB)ds 4 suBBETA a1(sl-.="r)dta.;

SLA

PARTIAL-EXPRESSION 4-append(PARTIAL-EXPRESSION,LOCAL-EXPR);
MARKED-INTrERVALS 4-union(MARKED-IN4TERVALS, (1));
ITERVALS-TO-BE-PRO CESSED 4-- unioII(lNTERVALS-TO-BE-PROCE-SSED,

list-difference(RLATED-NTERVALS, MARKED-INTERVALS));
while-end;
return PARTIAL-EXPRESSION;

Figure 2-18: Procedure to express P(Cii***,Cm..Ist6=t&du0=d) as an iterated integral

start time (120) and the tendency of the other activities to push As towards its latest start time
(140) in order to have more freedom. A similar remark applics to the other four activities. It
should also be noted that Al's a posteriori start time density between 40 and 50 and A5 's
between 90 and 100 are not zero, though very small, which unfortunately does not appear very
clearly on the graphs.

37

initialization:
PARTIAL-EXPRESSION: F_
MARKED-INTERVALS: (11)
INTERVALS-TO-BE-PROCESSED: 1(12, 14)

step,:

1: 12

PARTIAL-EXPRESSION: r- 2(St2-:T2)dr2

MARKED-INTERVALS: (I1 1 12)
INTERVALS-TO-BE-PROCESSED: (14w 13)

step2 :
1:14

PARTIAL-EXPRESSION: fldu, o2(St2=-2)dT2 f1d j' 4(Sr4t4T) d

MARKED-INTIERVALS: (11, 12, 14)
INTERVALS-TO-BE-PROCESSED: (131 15

step3 :
1: 13

PARTIAL-EXPRESSION: f 'G2(St2-t2)dT-2 f,, a4(St4=_T4) d; f, G3 s 3 t3

MARKED-INTERVALS: (11, 12, 13, 14
INTERVALS-TO-BE-PROCESSED: (I5)

step4 :
L 15

PARTIAL-EXPRESSION: f" oY2(St2=t 2)dtC2 f J (T4(St 4T) dT f Y3(St3=T-3) dT3
,d. d 2 d"2

fMax(13+du3.,4+du4) o5,(st,5=15) dt5
MARKED-ITERVALS: (11, 12,11415
INTERVALS-TO-BE-PROCESSED: nil

Figure 2-19: Main steps involved in the construction of (15).
Notice that the cc expressions have been omitted as they trivially

evaluate to 1.

38

-h 0.08-
CO0.07 -Al1 posterior start time probability density
U)0.06

S0.05-
~0.04-
00.03-
.00.02-

~-0.01
~*000 10 20 30 40 5060 70 80 90 100 110 120 130 140 150

0.08-start time

0.07 -A2 posterior start time probability density
0.06-

S0.05-
S0.047
.00.03-
.00.02-
'-0.01-

S000 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0.08-start time
00.07 -A3 posterior start time probability density

0.06-
S0.05-
S0.04-
.00.03-
.00.02-
0.1
~-0.01

S00 102 04 06 08 0100 110o120130 140 150

0.08-start time

S0.07 -A4 posterior start time probability density
U)0.06-

S0.05-
~0.04-
.00.03-

.0 0.02-
~-0.01

0 .08- start time
0.07 -A5 posterior start time probability density
0.06-

S0.05-
S0.04-
.00.03

.0 0.02
L 0.01 -- _

S000 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

start time

Figure 2-20: A posteriori start time densities for order,

39

2.4.5 Propagation in a I'CG with Explicit Disjunctions
In the case of explicit disjunctions in the TCG, one has to add the probabilities of all possible

combinations of relations. Consider the example displayed in Figure 2-21. There are three time
intervals I, 12, and 13. The temporal relation constraints are:

* Cl: I (BEFORE, AFTER) 12, and

- C2:12 (BEFORE, AFTER) 13.
Four combinations are possible:

1. 1 BEFORE 12 and 12 BEFORE 13,

2. I BEFORE 12 and 12 AFTER 13,

3. 1, AFTER 12 and 12 BEFORE 13, and

4. I AFTER 12 and 12 AFTER 13.

The a posteriori probability distributions are obtained by adding the probabilities of all four
possibilities. For example:

P(CI&C2 I s=t)

=fl- a2(St2=T2)dt12J Y(t=d-
+dU I 2 +du2

+ f,'I 2 (st2 -T)d 2a 3(st3: 3)dt
+ I a 2 (s t2----2)dT-3 3(st 3=r 3)d'r 3

+f J-'2(Y 2(st 2 - 2)1 dg2f+d- 2 3(st 3=T-3)dT-3

(r"2-u3

C1:1I {BEFORE,AFTER} 12

C.: I. {BEFORE,AFTER} 13

Figure 2-21: A TCG with explicit disjunctions

As the number of possible combinations grows exponentially with the number of time
intervals, the computations are expected to quickly become intractable. Fortunately, in the
factory scheduling domain, it has been our experience that such disjunctions are extremely

infrequent.

40

2.4.6 Result Interpretation
It is interesting at this point to look back at the desiderata and requirements identified in

subsection 3.2 and check if they are satisfied. From subsection 3.2, we already know that our a
priori start time distributions have been built to satisfy requirementl. In order to properly
perform consistency checking we still need to check requirement2, i.e. we need to make sure
that no admissible value may receive a zero a posteriori probability. This just follows from
probability theory. Moreover the method will give a zero a posteriori probability to any value
forbidden by the TCG, given the a priori probability distributions. Hence the computation of the
a posteriori probabilities is perfect with respect to desideratum2, as far as the interactions
defined by the TCG are concerned. The remaining inconsistencies result from the difficulty to
account for inter-order interactions between unscheduled activities.

Once the a posteriori start time and duration distributions have been computed, one has to
distinguish between two possible situations:

1. If at least one of the a posteriori probability density is uniformly zero then the
current CSP is unsatisfiable (inconsistent). The incremental scheduler should
backtrack, if still possible.

2. Otherwise, after having been normalized, the a posteriori distributions can be
combined to obtain the resource demand densities induced by the CSP, as we
describe in the next section20 . The normalization simply expresses that the total
probability that each activity occurs is equal to one.

Because they account for the interactions defined by the TCG, a posteriori start time (and
duration) distributions reflect intra-order interactions. They generalize the Operations Research
notion of activity slack [Johnson 74]. Indeed a value with a high a posteriori probability will
usually correspond to a high utility and will be likely to leave a lot of freedom for selecting high
utility values for the other variables that have not been assigned a value yet. Therefore selection
of start times (and durations) with high a posteriori probabilities is expected to result in good
solutions to the CSP (desideratuml)2 1. An activity whose range of admissible start times (and
durations) with high a posteriori probabilities is very wide is an activity with a lot of slack (with
respect to the TCG). On the other hand, if the range of admissible values with high a posteriori
probabilities is small, the activity has little slack. Equivalently, from a constraint satisfaction
point of view, these a posteriori distributions can be seen locally as measures of value goodness
and globally as measures of variable looseness.

However it is important to understand that, in general, the peaks of the a posteriori start time
aid duration distributions will not exactly coincide with the optimal activity start times and
durations of the problem, nor will they even coincide with those of the problem obtained by
omitting the resource capacity constraints. For instance, in the case of order 1 , the optimal start
times of A1, A2, A3, A4 , and A5 are respectively 30, 60, 90, 60, and 120 (and 30, 60, 90, 90, and
120 if one omits R2 's capacity constraint). Obviously these optimal start times do not exactly
coincide with the peaks of the distributions displayed in Figure 2-20. This is because at this stage

2°This situation is not a guarantee that the current CSP is satisfiable since we have only performed partial
consistency checking.

21Although one should still account for inter-order interactions, which is the topic of the next section.

41

we have not accounted precisely for the interactions induced by the capacity constraints. Our a
priori distributions accounted only implicitly for the existence of these interactions by assuming
non zero probabilities for values that were not locally optimal (see Figure 2-9). Iterating the
propagation process as suggested in subsection 3.2, i.e. using resource demand densities to guess
new a priori probabilities, should improve the quality of the a posteriori start time and duration
distributions as measures of start time and duration goodness (desideratuml).

2.5 Resource Demand Densities
We complete the propagation process by combining the a posteriori start time (and duration)

probabilities to estimate the amount of contention for each resource. This is performed in two
steps:

1. For each activity Ak., we compute a set of individual demand densities Dl1j. For
each resource RWid that an activity Ak can use, the demand density Djt) reflects
the probability that Ak uses Rai at time t to fulfill its resource requirement Rki.
This probability depends both on the probability that Ak is active at time t and the
probability that Ak uses R~j to fulfill its requirement Rki. The probability that an
activity is active at some time t is given by the probability that the activity's start
time and duration are such that the activity does not start after t and does not start
so early that it is already finished by t. In the case of a fixed-duration activity Ak ,
this is the probability that the activity starts some time between t-duk and t. A
detailed treatment of the computation of individual demand densities is given in
appendix2. We will also interpret Di.Jt) as the reliance of Ak on the possession of
Rka. at time t. Indeed activities with little slack and few good possible resources
wi/l have high individual demand densities concentrated over short time periods
and a few resources, whereas activities with a lot of slack and several good
resource alternatives will have smoother individual demand densities spread over
long periods of time and several resources (see appendix 2 for details).

2. For each resource, activities' individual demand densities are combined to obtain
the resource's aggregate demand density.This density gives the expected demand
for the resource as a function of time. In the example described in subsection 1.3,
the aggregate demand densities are given by:

" R1's aggregate demand density = Dl(t)=Dlll(t)+D211(t)+D511(t)

" R2 's aggregate demand density = D2 (t)=D 1 12 (t)+D 312 (t)+D 4 12(t)+D 7 12 (t)

" R3 's aggregate demand density = D3(t)=D613(t)+D713(t)+Ds13(t)
Notice that the aggregation process is performed regardless of the resources'
capacities. As a matter of fact, a resource's aggregate demand density at some time
t may get larger than its capacity. In general high contention for a resource will
require prompt attention from the scheduler.

Figure 2-22 depicts the aggregate demand densities DI(t), D2 (t), and D3(t) for the example in
subsection 1.3. Clearly the contention between A3, A4 and A7 for R2, which was predicted in
the introduction, has been identified by the propagation method. It corresponds to the peak of
D2 (t) centered around t=100. This peak reaches a density of 1.5, which is much larger than any
of the other peaks. Figure 2-23 shows the individual contributions of A3, A4 , and A7 to the
demand around the peak, namely D3 12(t), D4 12(t), and D7 12(t). An area of width 30 has been

42

1.00
q 0.90 aggregate demand density for R1

0.80
0.70A0 .60o Al12A
0.50

r 0.40
0.30
0.20
0.10
0.00

0 10 20 30 40 50 60 70 80 90 100110120130140150160170
time

1.50
1.40 aggregate demand density
1.30

b 1.20- for R2
b1 1.10-
C 1.00-

0.90 A0.80
0.70A

0.50
0.40 A7
0.30
0.20
0.10
0.00

0 10 20 30 40 50 60 70 80 90 100110120130140150160170
time

o.9o aggregate demand density for R3

0.700 .60oA A7 A
0.50
0.40
0.30

q 0.20
0.10
0.00

0 10 20 30 40 50 60 70 80 90 100110120130140150160170
time

Figure 2-22: R1, R2 , and R3 's aggregate demand densities

delimited around the peak 22. This is the area of high contention for R2. It clearly appears that
within that zone, A3 is the activity whose individual demand density contributes most to the
demand for R2 . Consequently A3 is the activity that relies the most on the possession of R2
within the area of high contention. An incremental scheduler can accordingly decide to first

22There is no particular reason for chosing 30 except that it seems to be a characteristic duration for this problem,
since all the activities have a duration of 30. The same results would hold if we were considering slightly smaller or
larger intervals of contention around the peak.

43

-h 1.50
S1.40- aggregate demand density
S1.30 frR
b 1.20-frR

10 1.10-
c 100

0.90-
q~0.80-
b0.70-

0.60-
0.50-
0.40-
0.30
0.20-
0.10-
0.00t j L0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170

time

0.90 A3 individual demand density for R2
(0.80-
S0.70-
b0.60-
b0.50-
S040-

rZ 0.30
q~0.20-
b0.10-

0.00 ---- -
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

time

0.90 A4 individual demand density for R2
(0.80
S0.70-
b0.60-
b0.50-
S040.

0.30
0j.2 0

*~0.10
0.00[-

0 10 20 30 40 50 60 70 80 90 100110120130140150160170
time

S0.90 A7 Individual demand density for R2
(0.80-
S0.70-
b0.60-
b0.50-
S0.40-
ca0.30
q~0.20-
b0.10-

0.00 II I I

0 10 20 30 40 50 60 70 t0 90 100110 120 140150 160170
time

Figure 2-23: Contributions of A3, A4, and A7 to R2's aggregate demand density

44

focus its attention on the scheduling of A3.

2.6 Discussion

2.6.1 Time Complexity
As demonstrated in section 4, in a TCG with no explicit disjunctive constraints,

P (stk = t&duk=d&C, &C2 &... &C,,) can be expressed at worst with a 2(n-l)-tuple integral of a
priori start-time and duration probability densities, where n is the number of activities to
schedule. The construction of these integrals can be performed in polynomial time (see the
procedure in Figure 2-18). On the other hand, evaluation of multiple integrals using classical
integration techniques requires exponential time. In the worst case computation of the n a
posteriori distributions requires O(nK ') integrand evaluations, where K is a constant that
depends on the integration method. In the case of fixed-duration activities this complexity is still
O(nKI). This exponential worst-case time complexity is actually a very pessimistic one. In
manufacturing environments activities are grouped in orders. Only activities within the same
order have temporal relation constraints between them. Therefore the largest multiple integrals
that one has to evaluate correspond to the largest number of interconnected activities within an
order (say Max mdar) This results in a worst case time complexity of nKZm-armor in the case of
n variable-duration activities, and a time complexity of nKM-morar in the case of n fixed-
duration activities. This also means that, for a given set of order types (i.e. Max morar is fixed),
the worst-case time complexity to compute the a posteriori probability distributions is linear in
the number of orders to schedule. The computation of the resource demand densities requires at
most O(n x r) steps, for n activities and r resources. Hence for a fixed set of order types and a
fixed set of resources, the asymptotic time complexity of the approach is linear in the number of
orders to schedule.

In manufacturing environments, one may have to schedule up to several thousands of activities
grouped in orders of up to 20 or 30 activities. Assuming that all these activities are modeled as
variable-duration activities, one may have multiple integrals of dimension up to 60. Numeric
evaluation of such integrals is usually performed using Monte Carlo techniques [Stroud 71].
[Lepage 78] describes an adaptive Monte Carlo method for evaluating multidimensional

integrals whose asymptotic time and space complexities are linear in the integral's dimension.

Alternatively one may try to reduce the size of the integrals via the use of a hierarchical
scheduler.

2.6.2 Expressiveness of the Model
The preference propagation techniques that we have presented allow for all thirteen of Allen's

temporal relation constraints as well as for disjunctions of such constraints. Additionally
quantitative temporal relation constraints such as "ActivityB should start at least 5 minutes after
activityA" can be represented using dummy activities. For instance, one can introduce a dummy
activityc with duration of 5 minutes and the two constraints "activityA MEETS activitYc" and
"activityc BEFORE activityB". Using duration preferences one can express even more complex
quantitative temporal relation constraints such as "ActivityB should start as soon as possible
within 5 minutes after activityA".

45

Our model accounts for three types of local preferential constraints: start time, duration, and
resource preferential constraints. End time preferential constraints can be expressed using
dummy activities. For instance an end time preferential constraint on an activityA can be
expressed as a start time preferential constraint on a dummy activityB MET-BY activityA. Our
framework also seems to allow for the representation of the most common global organizational
constraints [Baker 74]. For instance, minimizing mean (weighted) order tardiness can be
expressed with the help of end time (hence start time) constraints on the last activities of each
order. Minimization of mean (weighted) order flowtime can be represented with aggregate
activities, each containing all the activities in an order and a preferential constraint on the
duration of each aggregate activity.

2.6.3 Possible Improvements
The preference propagation technique presented in this paper has been implemented on a Sun

3/60 running Knowledge Craft on top of Lucid Common Lisp for TCGs with fixed-duration
activities interconnected by BEFORE/AFTER relations and that may contain cycles. An
incremental scheduler has also been built that uses the preference propagation module to focus
its attention. Preliminary experimentation with the system suggests several possible
improvements.

2.6.3.1 Iterative and Hierarchical Preference Propagation
As already mentioned in subsection 3.2, we are currently investigating alternative ways to

compute a priori probability distributions. In particular we are considering both iterative and
hierarchical variations of the preference propagation scheme presented in this paper. In an
iterative approach one can use the resource demand densities obtained by the previous iteration
to estimate the probability that a given resource will be available for an activity at some time t.
These probabilities can then be combined to obtain more accurate start time, duration, and
resource a priori probability distributions for a new propagation. For instance good start times for
which good resources are likely to be unavailable would see their a priori probability being
reduced. A hierarchical approach is similar except that the additional information is obtained
from the results of the propagation at the upper level rather than from the previous iteration.
Such techniques are expected to account more accurately for the resource requirement
interactions of unscheduled activities.

2.6.3.2 Activity Criticality
In the introduction we have defined a critical activity as one whose good (overall) start times

and resources are likely to become unavailable if one started scheduling other activities first. In
this paper we have assumed that the most critical activity is the one that relied the most on the
possession of the most contended resource (over the area of high contention for that resource).
This measure of activity criticality is only concerned with the availability of good resources at
good start times. Good start times may however become unavailable just because of operation
precedence interactions (i.e. intra-order interactions), as reflected in the a posteriori start
time/duration distributions. 23We are looking for ways to integrate the notion of start

23In the approach that we have presented, intra-order interactions are accounted for indirectly via the individual
and aggregate demand densities, since these densities are computed from the a posteriori start timc/duration
distributions.

46

time/duration looseness identified in subsection 4.6 directly into our measure of activity
criticality rather than only indirectly through measures of resource contention and activity
resource reliance. Additionally, rather than simply accounting for activity reliance with respect
to the most contended resource, we would like to develop a measure that accounts for the
reliance of an activity on each of its possible resources and the contention on each of these
resources (over the appropriate time intervals).

2.6.3.3 Value Goodness
All along we have assumed that value goodness was solely determined by the problem

constraints, i.e. both the required and preferential constraints of the problem. A more
sophisticated approach would consist in also accounting for the time available to come up with a
schedule. If there is very little time available, one will be mainly concerned with finding an
admissible schedule as soon as possible. Good values are therefore the ones that are the least
likely to result in backtracking, i.e. the least constraining values identified in earlier work in
constraint satisfaction with uniformly preferred values [Haralick 80]. Instead if more time is
available, it may be worthwhile considering riskier values because they are likely to result in a
better schedule. For instance, if one machine is more accurate than all the other ones, one could
try to schedule more activities on the most accurate machine. This may however result into some
extra backtracking due to the higher contention for the accurate machine.

2.7 Summary and Concluding Remarks
Factory scheduling is subject to a wide variety of preferential constraints such as meeting due

dates, reducing order flowtime, using accurate machines, etc. These local a priori preferences
interact. For instance, meeting an order's due date may prevent the scheduler from selecting an
accurate machine for an operation. Therefore selecting start times or resources based solely on
such preferences is likely to result in poor schedules. Preference propagation strives for the
construction of measures that reflect preference interactions. Such measures can then serve to
guide the construction of good overall schedules rather.than schedules that locally optimize a
subset of a priori preferences.

Our approach to preference propagation is inspired by two CSP look-ahead techniques known
as variable ordering and value ordering [Dechter 88]. Both theoretical and empirical studies
[Haralick 80, Freuder 82b, Nudel 83, Purdom 83, Stone 86]indicate that these techniques can

significantly reduce the amount of search for a solution. Earlier work had only focused on
applying these techniques to CSPs where variables have finite sets of equally preferred values.
Our approach to preference propagation extends these techniques to CSPs where variables have
infinite bounded sets of possible values with non-uniform preferences. The results of the
propagation are formulated as a set of texture measures. In this paper we have identified the
following texture measures: start time/duration goodness and looseness, resource contention,
and activity resource reliance.

From an Operations Research point of view, our preference propagation technique combines
advantages of both order-based and resource-based scheduling by accounting for both intra-order
and inter-order interactions [Smith 85].

We perform preference propagation within a probabilistic framework. A probability is
associated to each variable's possible value that dynamically reflects the likelihood that the value

47

results in a good schedule overall. We have identified requirements and desiderata to guide the
construction of such probabilities. These requirements and desiderata have been motivated by a
double objective:

1. We want to be able to detect unsatisfiable CSPs as soon as possible (quick
pruning), and

2. we want to use the propagation results to help focus the scheduler's attention on
the most critical decision points anu the most promising decisions at these points
(opportunistic scheduling).

We have argued that the approach presented in this paper fulfills these requirements and
desiderata.

We have described an algorithm to perform preference propagation in T/CCGs. The algorithm
deals with all thirteen of Allen's temporal relation constraints and allows for cycles in the
corresponding TCG. The algorithm also allows for activity start time, duration, and resource
preferences and accounts for earlier resource reservations if any. We have shown that the results
of the propagation across the temporal constraints can be combined to estimate resource
contention and activity resource reliance. We have also analyzed the computational
requirements of our approach.

The importance of this research lies in its attempt to give a more formal characterization of the
problem space, in which we carry the search for a schedule. Given the underlying uncertainty of
any search problem, a probabilistic characterization is a very attractive one. In this paper, we
have presented a model that uses Bayesian probabilities to account for preference interactions in
T/CCGs. The problem space is finally characterized by a set of textures that are used to guide the
search process.

48

Appendixl: A Posteriori Start Time and Duration Distributions
In this appendix we summarize the essential formulas developed in subsections 4.2 and 4.3 and

complete them to allow for all 13 of Allen's temporal relation constraints. The notations are the
ones defined in subsection 4.1.

0.1 Acyclic TCG with fLxed-duration activities

We found in subsection 4.2 that:

P(sto = t&CI &C 2 &... & C,,,) = O(Sto =) x P(CI &C 2&... &C .st = t) (17)

with:
P0

P(CI&C 2 &'".&CISto=t)= I- P(C0&SIsto=t) (18)
i=1

Ci may be any of Allen's thirteen temporal relation constraints:

0.1.1 C?: 1o MEETS

P(Coi & Si Isto = t) =P(st ° = t+ duo&S7i)

= °(st° = t + duo)P(S Isti = t + duo) (19)

0.1.2 CO: Io MET-BY 1

P(C5i &S i Isto = t) =P(st° = t - du° & Si)

= e(s/° :t- du) P(Si Ist° = t - dug) (20)

0.1.3 CO: 10 BEFORE I

P(Ci&Si Sto=t) = r,+ duoP(st7 =t&SQ)dt

fl ** (St~i = r)P(S'jjst° = z)dt (21)
duo

0.1.4 C?: Io AFTER I0

0P(C~'&S'I Sto =) '=1 f ' P(st~i=&S)d "r

- dai o (st=t)P(Si Isto = c)dc (22)

49

0.1.5 C?: 10 DURING eI

P(Ci& Soils10= = a(du < duo)r = t&S'i)dc
Jr ftI+ - du('(~

a cduo < duo) J _ 0 o(stoi =,r))P(S? Ist'=,r) dt (23)
t +duo - u

0.1.6 Co: 10 CONTAINS I?

P(C? & S'?Isto~g = t)(xdu > duo)J ff+ duo-uiP (s t = -r & S j) d

0
c(duo > du0 + duo - d-. 0o~i 0 -)(Sj st0=)dt (24)

0.1.7 C?: I0 STARTS li?

P(Co & So.1 sto=t) = c(duo <duo) P(sto = t& S)

=~~ ~~ cdu<du) a7o(sto = t) P(.s ,i t) (5

0.1.8 C?: 10 STARTED-BY I?

P(Ci& S'iIsto = t) = a(du, > duo) P(s~it &S

= a(du > du)ca(sto = t) P(li;I spi = t) (26)

0.1.9 c?: Io FINISHES I

P(C?'& S'I sto = t) = ax(duo < duo) P(st? =: + duo - duo & S7)

= a(duo < du5i co(s~i = t+duo-du?)P(S'?)Isto =t + duo - du5j (27)

0.1.10 c?: I~ FINISHED-BY 1?

P(Co& S 7Isto = t) = a(duo > duo) P(st7 t + duo - duo & s?)

a= u > duo) ao(s? =t+duo-du?) P(So I s1t = t + duo - du?) (28)

0.1.11 c?: I~ OVERLAPS I'

P(C?&?s 0 t o~u
i &SoSt = t = I+ d0 P(sto = 'r& So) d-

fMax 19,1 + do- duo)

f + duo) 0 cr?(st? = T) P(s~Ir=,c) dc (29)
Max I tt + duo - da,

50

0.1.12 CIO: Io OVERLAPPED-BY I,

0J Mm (., + d~- o o

P(C?& SIso :) = o - , ,)0 = T&sd
0

t-d i i

- du .

0.1.13 C?: Io EQUALS I

P(Ci & S'j I sto = t) = c (duo-duo) P(st=t & Si)

= a(duo=dub) a?(sr7=t) P(S o I st =t) (31)

0.2 Acyclic TCG with variable-duration activities

We found in subsection 4.3 that:

P (sto = t&duo=d&C&C 2 &...& Cm) = y(sto = t) x80(du0=d) x

P(C1 &C 2&... & C,,,I sto = t&duo=d) (32)

with:

P0
P(CI &C 2 &"'.&Cmst =t&du0 =d)= J7" P(C0&S0?sto = t&duo=d) (33)

i=1

C may be any of Allen's thirteen temporal relation constraints:

0.2.1 C?: I0 MEETS I

P(C'j&Sj jsto = t&duo=d) = P(st?=t+d&Sj

=-J °(du°=8) o°(sti=t+d)P(Silst°=t+d&du=85) d85

- 0 (du--8)d-- (t=t+d) °y (sto -) P(So I s--t &duo =8) dt (34)

The first equality is the most useful one. However equation (34) is useful for the treatment of
TCGs with cycles (see subsection 4.4). The same remark applies to the other equations involving
13 distributions.

0.2.2 Co: Io MET-BY 10

P(Co'&S sto = t & duo=d)

=- °(duo=8) ci(s° = t - 8) P(So I st = t- 8 &duo =8) d8

51

=0 8okduo=8) d8 f__f' (T=t-8) o(str?=-) P(S9i lsr?= & du =8) dt (35)

0.2.3 C': Io BEFORE 10

P(Coi & SiI st0 = t &duo =d)

=J6?8(du'=8)d81& (Y(so ,t)P(SIls9o=t&duo=8)dtz (36)

0.2.4 C?: I0 AFTER l?

P(Co & So. 1st0 = t &duo =d)

=J85k(duo = 8) d6Jf' Sa?(st?=,r) P(S'1 st0i =,r& duo =8) cit (37)

0.2.5 C?: 10 DURING I0

P(Coi& S'iI sto = t&duo =d)

=J8?(du=8) d8 I a9(st=) P(Sis~=r & duo =8) dt (38)

0.2.6 CO: 10 CONTAINS 110

P(Co& SoI sto = t &duo =d)

0.2.7 C?: I0 STARTS 1

P(C7i& SoIsto =t &duo =d)

=fd50 duo8) o(sto=t)P(S9jIst &du =S) d5

=Jd8(du?=8) d8J '13'r=t) ao(sO =T)P(S I st?= T &duo --) dt (40)

0.2.8 C?: Io STARTED-BY I0,

P(Ci &SiI sto = t &duo =d)

52

:==8?(u) d8 J1' @=r) a?(s4j =-c) P(S ilsi? -t & du' =8) dr (41)

0.2.9 C?,: I0 FINISHES I

P(Ci& SoI st = t &duo =d)

=fd8(duj=8)aj(s? =t+d-8)P(SIs151 =t+d-5&du? =8)dS

J 8du? 4) dlf +'(r=t+d-8) co (st5 --T) P(Si si se-T&dui~=o-) dt (42)

0.2.10 C?: 10 FINISHED-BY I

P(C&SiDst 0 = t&duo=d)

=J:8?i(du?=8) o(st? =t+d-8)P(SIlst? =t+d-5&dui=S)dB

d0 -8) d~f [31Pl(r=t+d-8S) a?(_=) P(S? I st?=t-&du?8) dr (43)

0.2.11 C?: 10 OVERLAPS1,0

=(o & 8?u?8d8 , t PS I st = & duo = 8))d

fJ:8(du0?=8)df ad (?st =-T) P(S s? = r & du = 8) dt

d++.

J '8?(du?'=8)d~f i+d a?(stj --=t) P(Si 1st = 'r & duo = 8) cdt (44)

0.2.12 C?: 10 OVERLAPPED-BYIto

P(Co& SiIsto = t &duo =d)

f C 80(du0 &8dsf "antjd ?(st? --T) P(So I sto=T& du?=8)&
J 0 ii -

53

Jd~o~t a(sr~-t)P(So I t= T &dui = 8) d-r

-~ujo--Z d8 J Goi(s) P(-oIsOi &do =8) (45)

0.2.13 C?: I , EQUALS e,

P(Cio&SIsto = t&duo=d)

= 8?(dui=d) ai(st?=t) P(So' I sei =t & duo=d)

=J(du?=)d f p2(8S~dTt)9(RO)(.S I sto= & =)dt 46

54

Appendix2: Activity Individual Demand Densities

0.1 Notations
In this appendix we assume that a posteriori start time densities have already been computed as

described in section 4. We assume that none of these densities is uniformly zero, otherwise this
would indicate unsatisfiability of the current CSP and the incremental scheduler would have to
backtrack. As already mentioned earlier, a posteriori start time densities can then be normalized
to express the fact that each activity will occur once (i.e. each activity will start exactly once).
These normalized a posteriori densities will be denoted:

* fixed-duration activities: Pv(stt&Cl&...&CM)

* variable-duration activities: PN(st=t&du,=d&C,& ...&Cm)

pRk.(Rkij) will denote the a priori probability that Ak uses Ru, to fulfill its resource requirement
Rki. DkAj(t) will denote Ak's individual demand for Rk2 as a function of t. This is the probability
that Ak uses Rkijat time t to fulfill its resource requirement RkA. The computations are performed
assuming an incremental scheduler whose earlier resource reservations are non-preemptible.
Therefore the demand density has to be reshaped so that it does not overlap with earlier
reservations. We propose a method for doing so, which involves two steps.

Finally we will be using the predicate AVAIL(Rkzj,t,t+duk) which returns true if and only if
resource Rkaj is available at all time between t and t+duk. This is a precondition for scheduling
activity Ak to start at time t, if Ak is to use resource Rkj.

0.2 Resource Demand Densities Produced by Fixed-Duration Activities
The probability that activity Ak uses Rki at time t to fulfill its resource requirement Rki is

given by the a priori probability that Ak uses Rjij to fulfill Rki multiplied by the conditional
probability that Ak is active at time t given that it uses Rkii to fulfill Rki. It turns out that this
latter conditional probability may be uniformly zero for some resources Rkij due to earlier
reservations. This can be accounted for by refining the a priori probabilities pRk.(Rkij). D,(t) is

therefore computed in two steps:
1. In the first step we compute:

DZOPI(t) = pRta(Rj)t'j PN(st--T&C, &...&C.IRi=R di

where Pv(stk--&Cj&... &C, kR-) is the probability that stk---T and that the
temporal relation constraints C are satisfied given the activities' a priori start
time distributions and given that.R4 is the resource used to fulfill requirement RV,.
This probability can be approximated by computing Ik's a posteriori start time
distribution starting from an a priori start time distribution that accounts for R i's
reservations. We do so by replacing ak(stk=t) with Cyk(Stk=t) xa[AVAIL(Rh,,t,t+duk)I

in the computation of P(stk=t&CI&... &C) In other words:

PN(stk--T&CI& ...&CmRt=R j)=KP(stk--t&Cj &...&C)

Oc[A VAlL(RA.j,T,r+du)1

55

where K is a normalization factor24 .

2. In the second step the a priori probabilities PRtA(RAi) are refined to account for the

resource reservations. The refined probabilities are denoted pP2(Rk,). Indeed, due

to earlier reservations, some resources Rni have a posteriori probabilities
P,(stk---t&Ct&...&CIR=Rkij) that are uniformly zero. Ak's individual demand for
these resources is therefore uniformly zero as well. Hence one can use the new
probabilities:

pNSeP2(R")= J-0 if P,,/stk--T&C,& ...&CIRki=RkA) is uniformly 0
KL, L pR(RkA) otherwise

where KcAi is a normalization factor. Notice that, for each Rk, because of the
consistency checking performed after the computation of the a posteriori start time
distributions, we are guaranteed at this point to have at least one resource Rni. such
that PN(stk=t&CI&... &C,,j Rk,=R ,) is not uniformly zero. One can then compute:

-t) =S P2(R .) J PN(st,---&C t &...&CmIR =Rj) dk~ij =P k -du

In practice it is not necessary to compute D'Pt(t): one can just compute P,,(stk---z&Ct&...&CJ
R,:-RtAj) and check if it is uniformly zero or not.

Finally, notice that the total demand is given by:

=psIP2(R) f 'dTf ~ P(4 &... &C.R~R,:
ki (JT-du A= SeP2(R +**P t+dud

+& lR=R..')drI kl (using Fubini)
PstepR) JP(S:&C 1 &. mbj'= j f

=Ph.2(Rki.) xduk (since PN is normalized)

and hence for each Rk. required by Ak:

' D""D2(r)dt=duk

which simply expresses that an activity Ak's total demand for a resource Rb is equal to its
duration duk. This duration has simply been distributed over time and over several resources
(RbAj) to account for the different possible schedules of the activity.

24Again this normalization simply expresses that the activity will occur exactly once.

56

0.3 Resource Demand Densities Produced by Variable-Duration Activities
The computations in the case of variable-duration activities are very similar to the ones for

fixed-duration activities:
1. In the first step one computes the distributions

Pv(tk-=- &duk e&Cl&..&CmVIR ta=R tj)=KP(Stk-=-T&duk=&Cl & ... &C,.)

a4A VAIL(RuL,.+e)]

where K is a normalization factor.

2. The probabilities pRka(Ri) are refined in the same way as for fixed-duration
activities. One can then compute:

slEP2(t) = pseP2(Rtkid d (stk=t&duk__&Cl&. ..&C mR_R ty d-r

Lastly, using Fubini's theorem, one can check that:

JDSteP2(tdj* stepl

step +**tfo el o NSt=T ki k

PR ki 2(R) J JAr, .[, ,,,,xt ,&du=:,&C,...&C.,=R)d

Rki 0 T

= pXeP2(R,.) J"d +_Er PN(st&dut=e&Cl...&&CR"=Rt,)d t
Rki J Jo J--

Hence, for each R,, required by Ak, Ak's total demand is:

Ai D."2(t)dt, = [, p eP2(Rki)PN(Stk=--&dUk=F jC..&C.R-)]d2

which is Ak's expected duration given the joint start time and duration probability density
j P2 (R.j)P/stk--T2&duk=F&C...&C-IR=Rkij).

57

CHAPTER 3: Activity-Based Scheduling

3.1 Introduction
We are concerned with the issue of how to opportunistically focus an incremental job shop

scheduler's attention on the most critical decision points (variable ordering heuristics) and the
most promising decisions at these points (value ordering heuristics) in order to reduce search and
improve the quality of the resulting schedule.

So called order-based and resource-based scheduling techniques have been at the origin of
several incremental scheduling algorithms. In an order-based approach, each order is considered
a single decision point, i.e. orders are prioritized and scheduled one by one. In a resource-based
approach, resources are rated according to their projected levels of demand. Resources are then
scheduled one by one, starting with the ones that have the highest demand. Order-based
scheduling has proven to be a viable paradigm in problems where slack (i.e. temporal precedence
interactions) is the dominating factor. On the other hand resource-based scheduling is likely to
perform better in situations where resource contention (i.e. resource requirement interactions) is
critical. Neither approach is perfect. Indeed a lot of real life scheduling problems contain a mix
of critical orders and critical resources. In the past few years it has become clear that in order to
perform well in a wider class of problems, schedulers need the ability to opportunistically switch
from one approach to the other. The OPIS [Smith 85, Ow86, Smith86a] scheduler was the first
scheduler to combine both approaches. OPIS uses demand thresholds to identify bottleneck
resources. Typically, when a bottleneck resource is detected, all activities requiring that resource
and that have not yet been scheduled will be scheduled. When all bottleneck resources have
been scheduled, OPIS switches to order-based scheduling. While in order scheduling mode,
OPIS may detect the appearance of new bottleneck resources and switch back to its resource
scheduling mode. Even such an approach has its shortcomings as the criticalities of the activities
requiring a bottleneck resource or belonging to a critical order are not homogeneous, i.e. some of
these activities may not be that critical. This consideration lead us to the investigation of a new
scheduling framework where the decision points are no longer entire resources or entire orders
but instead where each activity is a decision point in its own right. Within this framework
activity criticality is no longer determined via a sole bottleneck resource or via the sole order to
which it belongs. Instead measures of activity criticality account for both temporal precedence
interactions (i.e., so-called intra-order interactions [Smith 85]) and resource requirement
interactions (i.e., so-called inter-order interactions). By simultaneously accounting for both types
of interactions the approach is expected to opportunistically combine advantages of both order-
based and resource-based scheduling techniques.

In this chapter, we study one variable-ordering heuristic and three value-ordering heuristics for
activity-based scheduling. A preliminary set of 38 scheduling problems was used to compare the
performance of these heuristics. The experiments clearly indicate that the variable-ordering
heuristic significantly reduces search. The comparison of the value-ordering heuristics when
combined with the variable ordering heuristic suggests that a least constraining value ordering
heuristic is not the only viable approach to maintain the amount of search at an acceptable level.
Indeed some other heuristics produced much better schedules without significantly increasing
search.

58

In the next section we describe our model of the job-shop scheduling problem. The following
section gives an overview of the activity-based approach to scheduling that we are investigating,
and introduces a probabilistic model to account for both intra-order and inter-order interactions.
Section 4 presents a variable-ordering heuristic based on this probabilistic model. In section 5
we present three value-ordering heuristics: a least constraining heuristic, a hill-climbing
heuristic, and an intermediate heuristic where values are rated according to the probability that
they will remain available and that no better values will remain available. Preliminary
experimental results are reported in section 6. Section 7 discusses these results. Section 8
contains some concluding remarks.

3.2 The Model
Formally, we will say that we have a set of N jobs (i.e. orders) to schedule. Each job has a

predefined process plan that specifies a partial ordering among the activities (i.e. operations) to
be scheduled. Each activity Ak (1 < k n) may require one or several resources Rki (1 < i <Pk),
for each of which there may be several alternatives Rka7 (1 j -qki)2 5 . We will use stk, etk, and
duk to respectively denote Ak's start time, end time, and duration.

We view the scheduling problem as a constraint satisfaction problem (CSP).

The variables of the problem are the activity start times, the resources allocated to each
activity, and possibly the durations of some activities. An activity's end time is defined as the
sum of its start time and duration. Each variable has a bounded (finite or infinite) set of
admissible values. For instance, the start time of an activity is always restricted at one end by
the order release date and at the other end by the order latest acceptable completion time 26

according to the durations of the activities that precede/follow the activity in the process plan.

We differentiate between two classes of constraints: activity precedence constraints and
resource capacity constraints. The activity precedence constraints are the ones defined by the
process plans. Our model [Sadeh88] accounts for all 13 of Allen's temporal constraints [Allen
84]. Capacity constraints restrict the number of reservations of a resource over any time interval
to the capacity of that resource. For the sake of simplicity, we will assume in this paper that all
resources are of unary capacity.

Additionally our model allows for preferences on activity start times and durations as well as
on the resources that activities can use. Preferences are modeled with utility functions. These
functions map each variable's possible values onto utilities ranging between 0 and 1. Preferences
on activity start times and durations allow for the representation of organizational goals such as
reducing order tardiness, or reducing work-in-process (WIP) [Fo - 83b, Sadeh88]. Resource
preferences are very useful to differentiate between functionall- iuivalent resources with
different characteristics (e.g. difference in accuracy). In this paper v, will assume that the sum
of the utility functions defines a (separable) objective function to be maximized.

25It is important to keep in mind that several activities may require the same resource. For instance if two
activities A1 and A2 both require a unique resource which has to beR,. we have Rm =R21 =R1.

26This is not necessarily the order's due date.

59

3.3 The Approach

3.3.1 An Activity-based Scheduler
In an activity-based approach, each activity is treated as an aggregate variable, or decision

point, that comprises the activity's start time, its resources, and possibly its duration. The
schedule is built incrementally by iteratively selecting an activity to be scheduled and a
reservation for that activity (i.e. start time, resources and possibly duration). Every time a new
activity is scheduled, new constraints are added to the initial scheduling problem, and
propagated. If an inconsistency is detected during propagation, the system backtracks. The
process stops either when all activities have been successfully scheduled or when all possible
alternatives have been tried without success.

The efficiency of such an incremental approach critically relies on the order in which activities
are scheduled and on the order in which possible reservations are tried for each activity. Indeed,
because job-shop scheduling is NP-hard, search for a schedule may require exponential time in
the worst case. Both empirical and analytical studies of constraint satisfaction problems reported
in [Haralick 80, Freuder 82b, Purdom 83, Nadel 86b, Nadel 86c, Nadel 86d, Stone 86] indicate
however that, on the average, search can significantly be reduced if always focused on the most
critical decision points and the most promising decisions at these points. Such techniques are
often referred to [Dechter 88] as variable and value ordering heuristics.

In this paper we assume that critical activities are the ones whose good (overall) reservations
are most likely to become unavailable if one were to start scheduling other activities first. In
general reservations may become unavailable because of operation precedence constraints,
because of resource capacity constraints, or because of combinations of both types of constraints.
Clearly criticality measures are probabilistic in nature, as their computations require probabilistic
assumptions on the values that will be assigned later on to each variable (i.e. the reservations that
will later on be assigned to each unscheduled activity). In the next subsection we introduce a
probabilistic framework that accounts for the interactions of start time, duration and resource
preferences induced by both activity precedence and resource capacity constraints. We will use
this model throughout the remainder of the paper to define several variable and value ordering
heuristics for activity-based scheduling.

3.3.2 A Probabilistic Framework to Account for Constraint Interactions
In this subsection we outline27 a probabilistic model that we will use throughout the remainder

of the paper to define several variable and value ordering heuristics for activity-based job-shop
scheduling. We justify the model by its ability to account for both intra-order and inter-order
interactions and by its relatively low computational requirements. For the sake of simplicity, the
formulas presented in this paper assume fixed duration activities. Similar formulas can be
deduced when dealing with variable duration activities.

In our model a priori probability distributions are assumed for the possible start times and
resources of each unscheduled activity. These probabilities are then refined to account for the

27 A more detailed description can be found in [Sadeh88].

60

interactions induced by the problem constraints (i.e. both intra-order and inter-order
interactions). Finally the results of this propagation process are combined to identify critical
activities and promising reservations for these activities. In their simplest form the a priori
probability distributions are uniform. This amounts to assuming that, a priori, all possible
reservations are equally probable. A slightly more sophisticated model consists in biasing the a
priori distributions towards good values as defined by the utility functions [Sadeh88]. Such
biased distributions are expected to account better for value ordering heuristics that give more
attention to higher utility values.

Once the a priori distributions have been built, they can be refined to account for the
interactions of the problem constraints. In our model, the propagation is performed in two steps.
The probability distributions are first propagated within each order, thereby accounting for intra-
order interactions, and then across orders to account for inter-order interactions. Accounting
simultaneously for both types of interactions seem indeed very difficult as much from a
theoretical point of view as from a purely computational point of view. As a matter of fact the
number of ways in which a set of activities can interact is combinatorial in the number of these
activities28 . Instead, by separately accounting for intra-order and inter-order interactions, one
greatly reduces the amount of computation to be performed. The propagation results can always
be further refined by iterating the propagation an arbitrary number of times.

Concretely, once the a priori distributions have been generated, our propagation process
involves the following two steps:

1.
a. The a priori start time probability distributions are refined to account for

activity precedence constraints. The resulting (a posteriori) probability
distributions associate to the possible start times of each activity the
probability that these start times will be tried by the scheduler and will not
result in the violation of an activity precedence constraint. These a
posteriori start time distributions can be normalized to express that each
activity will occur exactly once, and hence will start exactly once.

b. For each resource requirement Rki of each activity Ak, and for each resource
alternative Rk i to fulfill Rki, we compute the probabilistic demand DU] of
Ak for R/a7 as a function of time. This probability is obtained using Ak's
normalized a posteriori start time distribution and the a priori probability
that Ak uses Rkij to fulfill its requirement Ri. Hence DkiWt) represents the
probabilistic contribution of Ak to the demand for Rkij at time t, if activity
reservations were only checked for consistency with respect to the activity
precedence constraints. Later on we will refer to Dkij(t) as Ak's
(probabilistic) individual demand for Rai at time t.

2. Finally the individual demand densities of all activities are aggregated (i.e.
summed at each point in time) to reflect the probabilistic demand for each resource

Uin any realistic problem, Monte Carlo simulation would indeed require tremendous amounts of computations if
one were to simultaneously account for all the activities and all the constraints. This is because the probability of
randomly generating a schedule for all the activities, that satisfy all activity precedence and resource capacity
constraints, is in general extremely small.

61

in function of time. The resulting aggregate demand densities may get larger than
one over some intervals of time, as the individual demand densities from which
they originate have not been checked for consistency with respect to the capacity
constraints. High demand for a resource over some time interval indicates a critical
resource/time interval pair, which requires prompt attention from the scheduler.
This is the basis to the variable-ordering heuristic presented in this paper.

More precise probabilities may be obtained by iterating the propagation process. One way to
do so consists in computing for each possible activity reservation the probability that this
reservation will be available and that no better reservation will be available. The availability
probability of a reservation can be approximated by the probability that the reservation does not
violate any activity precedence constraint or capacity constraint (see section 5 for details). These
probabilities can then be combined into new a priori start time and resource probability
distributions, and the propagation process can be carried out all over again. The experimental
results that we report in this paper have all been obtained without iterating the propagation
process. We are planning to perform similar experiments with probability distributions obtained
after iterating the propagation a variable number of times.

Notations

In the remainder of the paper the following notations will be used:
* pPRIOR(stk=t) will denote the a priori probability that Ak will be scheduled to start at

time t,
* PPOST(stk=t) will be the a posteriori probability that Ak starts at time t, i.e. after

accounting for activity precedence constraints,

* P °S0 (stk=t) represents the same probability distribution after it has been normalized
to express that Ak will start exactly once,

" Dkij(t) represents Ak's individual demand for Rki at time t, and

" D '19(t) will denote the aggregate demand for Rua at time t.

3.4 ARR: A Variable Ordering Heuristic Based on Activity Resource Reliance
ARR, the variable ordering heuristic that we study in this paper, consists in looking for the

resource/time interval pair that is the most contended for and the activity that relies most on the
possession of that resource over that time interval. This activity is selected as the most critical
one and hence is the next one to be scheduled.

The intuition behind this heuristic is the following. If activities that critically rely on the
possession of highly contended resources were not scheduled first, it is very likely that, by the
time the scheduler would turn its attention to them, the reservations that are the most appropriate
for these activities would no longer be available.

The aggregate demand densities introduced in subsection 3.2 are used to identify the most
demanded resource/time-interval pair. The activity that contributes most to the demand for the
resource over the time interval (i.e. the activity with the largest individual demand for the
resource over the time interval) is interpreted as the one that relies most on the possession of that

62

resource. Indeed the total demand of an activity Ak for one of its resource requirement Rki is
equal to Ak's duration and is distributed over the different alternatives, Rk/i, for that resource, and
over the different possible times when Ak can be carried out. Consequently activities with a lot of
slack or several resource alternatives tend to have fairly small individual demand densities at any
moment in time. They rely less on the possession of a resource at any moment in time than
activities with less slack and/or fewer resource alternatives. This allows ARR to account not
only for inter-order interactions but also for intra-order interactions.

The advantage of this approach lies in its relative simplicity: look for the most critical
resource/time-interval pair and select the activity that relies most on it. One may however
contend that this heuristic does not consider slack as an independent component to activity
criticality. Instead slack is only accounted for via resource contention. Another possible problem
with this heuristic is that it only considers resource reliance with respect to the most contended
resource. In general an activity Ak may require several resources Rka. Rigorously Ak's criticality
should therefore account for each of these resources. It should account for the contention for
each of the possible alternatives Rbi for these resources Rka, and the reliance of Ak on the
possession of each of these alternatives Rkij . Computation of such a criticality measure is likely
however to be more expensive.

3.5 Three Value Ordering Heuristics
In the experiments that we ran, we considered the following three value-ordering heuristics:

3.5.1 LCV: A Least Constraining Value Ordering Heuristic
Least constraining value ordering heuristics are known for being very good at reducing search

[Haralick 80, Dechter 88]. Similar heuristics have also been proposed for scheduling, even when
viewed as an optimization problem. [Keng88], for instance, suggests the use of a least
constraining value ordering heuristic as a primary criterion for selecting a reservation for an
activity. The quality of the reservations is only used as a secondary criterion when there are
several least constraining reservations to choose from. A similar heuristic is also outlined in
[Muscettola 87]. The extremely small number of feasible solutions to a scheduling problem

compared to the total number of schedules that one can possibly generate is what has made least
constraining value ordering heuristics so attractive.

LCV is a least constraining value ordering heuristic where every reservation ((stk=t, Rklj,
Rk2j2 ... , Rkpkjk)), for an activity Ak, is rated according to the probability

RESERV-AVAIL(stk=t, RklI,... ,Rkjp,) that it would not conflict with another activity's

reservation, if one were to first schedule all the other remaining activities. The reservation with
the largest such probability is interpreted as the least constraining one.

In our model, we express RESERV-AVAIL(stk=t, Rklj.... ,Rkpkjp) as the product of the

probability that stlk=t will not result in the violation of an activity precedence constraint and the
conditional probability that each resource Rklj,,Rk2j,..... Rkpp will be available between t and

t+duk, given that stk=t does not result in the violation of an activity precedence constraint

63

RESERV-A VAIL(stk=t, Rk lj I ... ,Rkpkip,)

PPOS(stk=t)
= H RESOURCE-A VAIL(Rkij, t, t+duk)

pPRIOR(stk= t) Rb, E 1,1,

where RESOURCE-AVAIL(Rkaj, t, t+dUk) is the conditional probability that Rki0 will be available
between t and t+duk, given that stk=t does not result in the violation of an activity precedence
constraint.

We will approximate the (conditional) probability that Rki will be available at some time r for

activity Ak with 2 .L) When approximating RESOURCE-AVAIL(Rkij,t,t+duk), one has to be

careful not to come up with too pessimistic an estimate. Indeed it is tempting to assume that the
(conditional) probability that Ra~j will be available for Ak between t and t+duk is given by the

product of o, L over all possible start times "t between t and t+duk. Depending on whether time
DR (t)

is discrete or not, this product would be finite or infinite. In either case the approximation would
be too pessimistic. Indeed this would be tantamount to supposing that the activities that
contribute to D'gg'() have infinitely small durations, i.e. that these activities can possibly require
R/i at time cr wit out requiring it at t-.&t or t+8. Instead, in order to account for the duration of
these activities, we will assume that each resource Rtay is subdivided into a sequence of buckets
of duration AVG(du), where AVG(du) is the average duration of the activities competing for R k1 ..
Consequently RESOURCE-AVAIL(Rkaj, t, t+du) is given by the probability that Ak can secure a
number of buckets equal to its duration, i.e.:

D ~du k

RESOURCE-A VAIL(Riaj t t+duk) = (AVG(Da'ft)))AVG(d)

,:ij, rt~d~d =(A VG Dagg i) ~ .

D Dr) D (ft)

where AVG(t")) is simply the average of .. taken between t and tduk.
D'ic (r) DRj-" {x

3.5.2 HC: A Hill-Climbing Value Ordering Heuristic
The second value ordering heuristic that we tested simply consists in ranking an activity's

possible reservations according to their utilities, i.e. preferences. Reservations with the highest
preferences are the first ones to be tried.

3.5.3 INT: An Intermediate Value Ordering Heuristic
Our third value ordering heuristic combines features from the previous two. Each reservation

is rated according to the probability that it would be available and that no better reservation
would be available, if one were to first schedule all the other remaining activities.

(A

3.6 Preliminary Experimental Results
A testbed was implemented that allows for experimentation with a variety of variable and

value ordering heuristics based on the probabilistic framework described in subsection 3.2. The
system is implemented in Knowledge Craft running on top of Common Lisp, and can be run
either on a MICROVAX 3200 or on a VAX 8800 under VMS.

We performed some preliminary experiments to evaluate the four heuristics presented in this
paper. These experiments were run on a set of 38 scheduling problems, involving between 3 and
5 orders and a total number of activities ranging between 10 and 20. The problems involved 3 or
4 resources. They involved only activities with a unique resource requirement (Rkl), for which
there was one or several alternatives (Rklj). Problems with both equally preferred and non
equally preferred resource alternatives were included. The scheduling problems were built to
reflect a variety of demand profiles: localized bottlenecks at the beginning, middle, and end of
the problem span, global bottlenecks spanning the whole duration of the scheduling problems,
and auxiliary bottlenecks were all included. Three different types of start time utility functions
were allowed: all start times (between the earliest and latest start times) are equally preferred,
late start times are preferred, and triangular start utility functions with a peak corresponding to
the due date (minus the duration of the activity). Triangular utility functions were only assigned
to the last activities of some orders. Time was discretized and a granularity equal to the third of
the smallest activity duration was used. A discrete version of the formulas presented in this paper
was used to compute the necessary probability distributions. The probabilities were computed
using biased a priori probability distributions obtained by normalizing the utility functions over
the domain of possible values of each variable. The granularity of the time intervals used for the
ARR variable ordering heuristic varied from one resource to the other and was selected to be
equal to the duration of the shortest activity requiring the resource.

Preliminary Experimental Results

RAND RAND ARR ARR ARR
&HC &LCV &HC &LCV &INT

Search < 0.47 1.00 0.96 1.00 1.00
Efficiency (> 0.27) (0.00) (0.05) (0.00) (0.00)

Schedule not 0.52 0.68 0.54 0.64
Value available (0.08) (0.06) (0.06) (0.05)

Figure 3-1: Average search efficiencies and schedule values for 5 combinations
of variable and value ordering heuristics run on a preliminary set of

38 scheduling problems. The standard deviations appear between parentheses.

The experiments were measured along two dimensions: search efficiency (i.e. number of

6

operations to schedule over number of search states generated) and global utility of the solution
as defined by a normalized objective function. The normalized objective functions were built so
that the best possible schedules that could be built without checking for constraint violation
would have a global value of 1. There was no guarantee however that a feasible schedule with
global value of 1 could be built. In the ideal case the search would be performed without
backtracking, and the number of search states generated would be equal to the number of
activities to schedule (i.e. efficiency of 1). The quality of the schedules is more difficult to assert
as the value of the objective function for the optimal schedule varied from one problem to the
other and was in most cases smaller than 1. For this reason the values of the schedules should
not be viewed as absolute measures. Instead they should only be used to compare the relative
performances of the combinations of heuristics that we tried.

The table in Figure 3-1 reports the average search efficiencies and schedule values obtained
with five combinations of variable and value ordering heuristics (for a total of 190 experiments).
Standard deviations are provided between parentheses. RAND denotes a random variable
ordering heuristic, where the next activity to be scheduled is selected at random from the
remaining unscheduled activities. Search was stopped when it would require more than 50 search
states. For RAND&HC, this cutoff rule had to be used in 12 of the 38 experiments. It did not
have to be used for any of the other heuristics. The average search efficiency of RAND&HC is
therefore even worse than 0.47. Because search did not terminate in almost a third of the runs
with RAND&HC, no good estimate of the value of the schedules produced by this heuristic
could be obtained.

3.7 Discussion
The results reported in Figure 3-1 clearly indicate the importance of a good variable ordering

heuristic to increase search efficiency (e.g. ARR&HC vs. RAND&HC). They also indicate that a
least constraining value ordering heuristic can make up for a poor variable ordering heuristic
(e.g. RAND&HC vs. RAND&LCV and RAND&LCV vs. -ARR&LCV). In the examples that we
ran the ARR variable ordering heuristic and the LCV value ordering heuristics both contributed
to limit search. The quality of the schedules produced by LCV is however very poor when
compared to the other two value ordering heuristics (ARR&HC or ARR&INT vs. ARR&LCV).
In particular ARR&INT performed as well as ARR&LCV as far as the efficiency of the search is
concerned (neither of them had to backtrack in any of the 38 examples) but produced much
better schedules. Even a simple value ordering heuristic like HC resulted in very little amount of
backtracking when coupled with our variable ordering heuristic (see ARR&HC). Overall HC
produced the best schedules although it required more search than INT and LCV, when coupled
with ARR. There seem therefore to be a tradeoff between the amount of search performed and
the quality of the resulting solution. If little time is available to come up with a solution the most
promising values may be the least constraining ones as they are the least likely to result in
backtracking. On the other hand, when there is more time available, one may consider looking at
riskier values if they are likely to produce better solutions. A value ordering heuristic could
accordingly be designed that accounts for the time available to find a schedule.

66

3.8 Concluding Remarks
In this chapter, an activity-based approach to scheduling has been investigated. Because of its

greater flexibility, such an approach is expected to allow for the construction of better schedules

than approaches using order-based or resource-based scheduling or even combinations of the

two. The price to pay for this flexibility is the potential overhead involved in the selection of the

next decision point on which to focus attention. While order-based and resource-based

scheduling typically require only the computation of criticality measures for each order or

resource in the system, an activity-based scheduling approach may potentially require the

computation of similar measures for each of the activities to be scheduled. In the simplest

scenario, these measures need moreover to be recomputed every time a new activity has been

scheduled. It is therefore important that the computation of these measures can be performed at a

relatively cheap computational cost. One may also consider scenarios where several activities are

scheduled before new criticality measures are computed.

We have presented a probabilistic framework that successively accounts for both intra-order

and inter-order interactions. Although such a two step propagation involves a slight loss of

precision in the way it accounts for interactions, it has the advantage of having a relatively low

computational cost [Sadeh88]. More accurate probability distributions may always be obtained

by iterating the propagation process. Our probabilistic framework allows for the definition of a

variety of variable and value ordering heuristics. In this paper, we have studied a simple

variable-ordering heuristic, ARR, that looks for the most contended resource/time interval pair

and the activity that relies the most on the possession of that resource/time interval pair.

Preliminary experiments with the heuristic indicate that it greatly contributes to increasing search

efficiency. Additionally our experiments with three value ordering heuristics seem to indicate

that least constraining value odering heuristics such as the one advocated in [Keng88] may not

be the only viable way to maintain search at an acceptable level. Instead, in our experiments,

other value ordering heuristics , when coupled with our variable ordering heuristic, produced

much better schedules without significantly increasing search.

Our variable ordering heuristic is not perfect. For instance it measures activity criticality only

with respect to one resource (the most contended resource/time interval pair). While the heuristic

performed well in problems where each activity requires only one resource (for which there may

or may not be alternatives), it may not be as effective for activities requiring several resources.

We are currently looking at other variable ordering and value ordering heuristics. We are also

pursuing our experiments with the heuristics presented in this paper. In particular we still have to

study the behavior of these heuristics on larger scheduling problems (i.e. more than 100

activities).

Our long term interest is in the identification of a set of (texture) measures characterizing the

search space, that can be used to both structure and guide search in that space. Measures of

variable criticality (variable ordering heuristics) and estimates of value goodness (value ordering

heuristics) are examples of such measures [Fox89].

67

CHAPTER 4: Representation

4.1 Introduction
In this chapter we present a framework for representing knowledge needed to perform

constraint-directed reasoning with special emphasis on the domain of scheduling. In addition,
this framework serves as the foundation of the implementation-level representation that we have
adopted in the project. The representation is expressed in the CRL language [KC 86]. A
scheduler that uses the representation presented in this report is described in chapter 3.

The main conceptual primitives in our work are activities, resources, production units, states,
and constraints. These primitives provide an extensible framework that can be used to represent
the relevant aspects of particular problem solving environments where constraint-directed
reasoning is used. In addition, these primitives are represented at various levels of conceptual
abstraction depending on the granularity of knowledge. For example, an operation is a
specialization of an activity. An important component of the representational framework is the
relations that connect the primitives and their instantiations. The main types of relations are
temporal and causal. In general, we distinguish between prototype descriptions and their
instantiations [KC 86] into specific manifestations of the corresponding concepts. The concepts
presented in this section are represented in the figures as schemata. A schema encapsulates
information and has an identifying name. A schema has a set of slots that describe attributes of
the schema. Meta information can be attached to a slot, a slot value or schema. Meta information
is information about the slot, slot value, or schema and is independent of the meaning
represented by these entities. In presenting schemata, we use the following convention:
schemata are shown in boldface, slots are shown in small CAPITALS and meta-slots are shown in
italics. The range restrictions are as described in [KC 86].

4.2 Activities
Activities are the subject of scheduling decisions. The specification of activities includes the

temporal and causal relations that connect them as well as their organization as aggregate
activities into larger constructs. An activity is elaborated into an aggregate activity (an activity
network) whose activities are part-of the aggregate activity. For example, a milliag-operation has
an elaboration milling-operation-network, which in turn has two activities, milling-setup and
milling-run. The primitive relation part-of connects the activity network to its component
activities. Thus, the elaboration-of relation separates an activity from its detailed description and
facilitates the representation of multiple elaborations of the same activity at different levels of
abstraction. Figure 4-1 depicts the pair of primitive relations elaboration-of and has-elaboration.

68

{elaboration-of
IS-A: relation
INVERSE: has-elaboration
DOMAIN: (or (type is-a state) (type is-a activity))
RANGE: (or (type is-a state) (type is-a activity))
TRANSITIVIY: (step elaboration-of t)))

{ {has-elaboration
IS-A: relation
INVERSE: elaboration-of
DOMAIN: (or (type is-a state) (type is-a activity))
RANGE: (or (type is-a state) (type is-a activity))
TRANSITIVITY: (step has-elaboration t)))

Figure 4-1: Relations representing elaboration of activities

In the manufacturing environment, activities are typically of two types: (a) operations
associated with the manufacturing processes to produce a part/product, and (b) supporting
activities, such as maintenance and repair. Temporal and causal relations organize operations
into production plans that indicate which operations need to succeed each other, which ones can
be executed in parallel and which resources each operation needs for its execution. The pair of
primitive relations has-next-activity and next-activity-of shown in 4-2 links an activity with its
successor(s) and predecessor(s).

((has-next-activity
IS-A: relation
INVERSE: next-activity-of
DOMAIN: (type is-a activity)
RANGE: (type is-a activity)))

(next-activity-of
IS-A: relation
INVERSE: has-next-activity
DOMAIN: (type is-a activity)
RANGE: (type is-a activity)))

Figure 4-2: Precedence relations between activities

Another way to aggregate operations is in terms of an order which indicates how many parts
need to be produced for the order's fulfillment. An operation is the basic unit of action in a
scheduling environment. It defines a transformation of the world from one state to another so
that at the end a part (an order) is produced.

69

Figures 4-3 and 4-4 presents an aggregate activity and a process plan which is one kind of
aggregate activity. Each aggregate activity has a type that is either a conjunctive or disjunctive
abstraction. A conjunctive abstraction indicates that the aggregate activity can be expressed as a
sequence of activities at the next lower level of the abstraction hierarchy. A disjunctive
abstraction indicates that the aggregate activity can be expressed as a set of alternative activities
at the next lower level of the abstraction hierarchy.

((aggregate-activity
IS-A: activity
TYPE:

(Range (or "and" "or"))
ELABORATION-OF:
HAS-SUBACTIVITY: }}

Figure 4-3: Aggregate Activity

((process-plan
IS-A: aggregate-activity J }

Figure 4-4: A Process Plan

The primitive relation has-subactivity, presented in figure 4-5, denotes the set of activities that
comprise the prototype aggregate activity. The primitive relation subactivity-of, presented in
figure 4-6, relates a subactivity back to the aggregate activity to which it belongs. These
relations are used to describe process abstractions.

((has-subactivity
IS-A: relation
INVERSE: subactivity-of
DOMAIN: (type is-a aggregate-activity)
RANGE: (type is-a activity)
TRANSITIVITY: (repeat (step has-subactivity t) 1 inf) } }

Figure 4-5: The relation has-subactivity

70

((subactivity-of
IS-A: relation
INVERSE: has-subactivity
DOMAIN: (type is-a activity)
RANGE: (type is-a aggregate-activity)
TRANSITIVrrY: (repeat (step subactivity-of t) I inf) })

Figure 4-6: The relation subactivity-of

In order to be performed, activities require one or more resources. For example, in order to
perform a cutting operation, the required resources are a machine on whose machine head a
cutting tool can be affixed, the part on which the cutting operation is to be performed, afixture
that immobilizes the part on the machine's bed, and an operator to operate the machine and to
load and unload the part and fixture. The resource requirements of activities are expressed by
the primitive relations required-resource, presented in figure 4-7 and resource-for, presented in
figure 4-8. The representation of resources is described in section 4. In our model, it is assumed
that all resources required by an activity, are required for the whole duration of the activity. An
additional assumption that we make is that 100% of each resource is required for the
performance of the associated activity. This is a simplifying assumption that might not be true in
actual manufacturing environments. For example, depending on the duration of a particular
cutting operation, an operator might be able to operate (e.g., load another part, fixture it and start
an operation) another machine during the cutting operation.

((required-resource
IS-A: relation
DOMAIN: (type is-a activity)
RANGE: (type is-a resource)
INVERSE: resource-for))

Figure 4-7: The relation required-resource

({resource-for
IS-A: relation
DOMAIN: (type is-a resource)
RANGE: (type is-a activity)
INVERSE: required-resource))

Figure 4-8: The relation resource-for

71

Assembling the primitives already defined and discussed for describing manufacturing
activities, we now proceed to put together the representation of an activity, shown in figure 4-9
and its specialization of interest, an operation, shown in figure 4-10. The manufacturing unit
which is transformed by the operation is expressed through the attribute operates-on.

{ (activity
IS-A: concept
HAS-TIME-INTERVAL:
ENABLED-BY:
CAUSE:
ELABORATION-OF:
HAS-ELABORATION:
HAS-SUBACTIVITY:
SUBACTIVITY-OF:
COST:
SCHEDULING-STATUS: })

Figure 4-9: Representation of an activity

({operation
IS-A: activity
OPERATION-NUMBER:
REQUIRES:
RUN-TIME:
LOAD-TIME:
UNLOAD-TIME:
OPERATES-ON:
HAS-NEXT-OPERATION:
NEXT-OPERATION-OF:))

Figure 4-10: Representation of an operation

4.3 States
A state is the collection of conditions under which an activity can be performed, or the

collection of new conditions produced by the activity. An activity is connected to its
precondition and postcondition states by causal relations. The pnmitive pair of inverse relations
enabl--s and enabled-by, shown in figure 4-11, specify the connection between an activity and its
enabling state.

72

(enabled-by
IS-A: causal-relation
INVERSE: enable
DOMAIN: (type is-a activity)
RANGE: (type is-a state)
TRANSmvrrY: (step enabled-by t))

({enable
IS-A: causal-relation
INVERSE: enabled-by
DOMAIN: (type is-a state)
RANGE: (type is-a activity)
TRANSITIVITY: (step enable t) }

Figure 4-11: Relations defining enablement of activities

In a similar fashion, the pair of inverse primitive relations, depicted in figure 4-12, cause and
caused-by defines the connection between an activity and its resulting set of conditions.

((cause
IS-A: causal-relation
INVERSE: caused-by
DOMAIN: (type is-a activity)
RANGE: (type is-a state)
TRANSITIVITY: (step cause t)))

((caused-by
IS-A: causal-relation
INVERSE: cause
DOMAIN: (type is-a state)
RANGE: (type is-a activity)
TRANSITIVITY: (step caused-by t) })

Figure 4-12: Relations defining activity postconditions

The abstraction of state information is performed using the same operators (conjunction and
disjunction) as for activity information, resulting in aggregate states that are related to their
component states via the has-sub-state relation. In turn, the component states are related back to
the aggregate state via the sub-state-of relation. An aggregate state that is a disjunct is true if any
of its sub-states is true. An aggregate state that is a conjunct should have all its sub-states true in
order to be true. Figure 4-13 shows the representation of the relations that define state

73

aggregation.

{substate-of
IS-A: relation
INVERSE: has-substate
DOMAIN: (type is-a state)
RANGE: (type is-a aggregate-state)
TRANSITIVITY: (step substate-of t) }

{ { has-substate
IS-A: relation
INVERSE: substate-of
DOMAIN: (type is-a aggregate-state)
RANGE: (type is-a state)
TRANSITIVITY: (step has-substate t)))

Fig,_ #-13: Relations defining state aggregation

States, as well as activities, persist for particular time intervals. The relation has-time-interval,
shown in figure 4-14, is associated with each state and activity in a scheduling system. For a

detailed representation of temporal relations, see section 6.2.

{has-time-interval
IS-A: relation
DOMAIN: (or (type is-a activity) (type is-a state))))

Figure 4-14: Representation of the has-time-interval relation

The following figures, figure 4-15 and 4-16, represent a prototype stare and aggregate-state.

74

{state
IS-A: concept
HAS-TIME-INTERVAL:
ENABLE:
CAUSED-BY:
ELABORATION-OF:
HAS-ELABORATION:
SUBSTATE-OF:
SCHEDULING-STATUS: }}

Figure 4-15: Representation of a state

{ { aggregate-state
IS-A: state
HAS-SUBSTATE:)}

Figure 4-16: Representation of an aggregate state

4.4 Resources
In this section, we present the hierarchical representation of resources to enable reasoning at

different levels of precision in allocating a resource. In the centralized system, we do not
consider functional resource groupings corresponding to work areas (resource groupings that
support particular production processes and/or process steps), cells (groupings of identical
machine types where tradeoffs based on particular machine characteristics can be factored into
allocation decisions) and individual machines. The aggregate resource abstractions (e.g, work
area and cell) will be considered as different agents in the distributed scheduling system.
Considering different aggregate resources as agents necessitates the definition of relations of
ownership of resources that are part of the aggregation, and relations has-resource and
is-resource-of to define the mutually exclusive groupings of resources belonging to an aggregate
resource.

Viewing resources at various aggregate levels impacts the level of granularity of capacity
definitions. In general, the capacity of a resource is the number of items that the resource can
process simultaneously. The term "item" is a general term and can refer to different units on
which the resource is operating. For example, a machine operator has capacity 1 and (usually)
operates one machine; a milling machine can be configured to cut 3 identical parts at the same
time (capacity 3).

We differentiate resources into groupings of various types. The two basic groupings that we
distinguish are stationary and mobile resources. Stationary resources are the ones that have a
fixed location. In a manufacturing organization, examples of stationary resources are machines

75

and workstations. Examples of mobile resources are human operators and fixtures that can be
loaded on different machines. The current location attribute holds location information for
movable resources. In some situations, a stationary resource can have moving parts. For
example, a milling machine can have a moving head that can take more than one position.
Hence, in the representation of such a resource, the current position of the machine head has to
be noted. Associated with fixtures are load and unload operations that require the fixture and the
position on which it is to be loaded as resources. The status of a resource indicates whether it is
available or not.

The next three figures, figure 4-17, 4-18 and 4-19, represent an abstract resource, and its
specializations of a milling machine (a stationary resource) and a fixture (a mobile resource).

((resource
ISA-A: physical-object
HAS-RESOURCES:
RESOURCE-OF:
CAPACITY:
OWNED-BY: }}

Figure 4-17: The representation of a resource

((milling-machine
IS-A: resource
HAS-WORK-BED: milling-bed
CURRENT-POSITION:

range: (TYPE instance bed-position)
STATUS: 1)

Figure 4-18: The representation of a milling machine

(fixture
IS-A: resource
FIXTURE-NUMBER:
CURRENT-LOCATION:
STATUS:))

Figure 4-19: The representation of a fixture

76

4.5 Production Units
Production units are the entities which are transformed by operations during the manufacturing

process. In this work, we are interested in modeling production units from the standpoint of
scheduling. This perspective, obviously constrains representational completeness, since
modeling considerations such as those related to design, process planning and marketing are not
included. The central concept in modeling production units is the part. The manufacture of a
part enters the manufacturing system through a work-order, the representation of which is
shown in figure 4-20, that specifies the QUANTITY of the part ordered, the DUE-DATE of the
order, the SERIAL-NUMBER and the order's PRIORITY.

{work-order
IS-A: concept
SERIAL-NUMBER:
FOR-PART:
QUANTITY:
PRIORITY:
DUE-DATE:)}

Figure 4-20: Representation of a work-order

One central characteristic of a part is the production process through which it is manufactured.
An abstracted representation of the process is the process-plan that has been discussed in section
2. Production plans are usually prototypical in that at the time of their construction they have no
information (neither can they anticipate) factory floor configurations and scheduling constraints.
29The scheduler instantiates the prototypical process plan for filling a work order to reflect the
realities of the factory floor at scheduling time. Another characteristic of a part is the required
material that is used to produce the part. This is related to inventory concerns of availability of
material. Currently, we assume that the required material is present when needed for the
production of the part. Figure 4-21 shows the representation of a part.

{(part
IS-A: physical-object
WORK-ORDER:

PROCESS-PLAN:
PRODUCTION-QUANTITY:
PART-ID: }

Figure 4-21: Representation of a part

291n this year's effort on the project, we have started to address the issues in the interactions of a process planner
with a scheduler in order to produce process plans that optimize scheduling concerns.

77

4.6 Constraints
In general, there are five types of constraints that a scheduler should take into consideration.

" Physical constraints. Physical constraints include, number of machines, fixtures,
setup and run times for each operation.

" Organizational constraints. Examples of organizational constraints include meeting
due dates, reducing Work in Process, increase machine utilization, and enhance
throughput.

" Preferential constraints. Examples of preferential constraints include preference for
using a particular machine for an operation (perhaps because of its speed or
accuracy), or using a particular human operator (perhaps because of his skill).

" Enablement constraints. These refer to constraints, the fulfillment of which creates a
state that enables the execution of an activity. For example, a process plan embodies
enablement constr.ints.

" Availability constraints. .aese ,onstraints refer to the availability of particular
resources at scheduling time. ,-or example, a machine may become unavailable
because of breai:down, the assignment of a third shift makes extra resources
available for scheduling.

4.6.1 Representing Constraints
The constraints found in scheduling mainly restrict (a) the choice of value(s) for some variable

(e.g., the due date of an order) or (b) the relation between two or more variables (e.g., the next
operation to be performed). We differentiate two types of variables: simple variables and
aggregate variables. Simple variables are represented as slots in a CRL schema [KC 86];
aggregate variables are CRL schemata. For example, a time interval during which an activity can
be potentially scheduled, is an aggregate variable whose slots include the simple variables
start-time of the activity, end-time of the activity, and activity duration. In the case of a simple
variable, constraint-related knowledge is stored in a meta-slot. In the case of an aggregate
variable, it is stored in a meta-schema. In the formalization of the scheduling problem (see
chapter 2 of this document), the variables of interest are the activity start times, the resources
required by each activity, and the duration of each activity.

The pair of primitive relations constrains/constrained-by, shown in figure 4-22, links a simple
variable with the constraints that affect its values.

78

((constrains
IS-A: relation
INVERSE: constrained-by
DOMAIN: (type is-a constraint)
RANGE: (type is-a simple-variable) })

(constrained-by
IS-A: relation
INVERSE CONSTRAINS:
DOMAIN: (type is-a simple-variable)
RANGE: (type is-a constraint)))

Figure 4-22: Relations associating a single constraint to a variable

The pair of primitive relations simple-variable-affects/affected-by-simple-varia/le, shown in
figure 4-23 links a simple variable to the aggregate variable it affects.

{{affected-by-simple-var
IS-A: relation
INVERSE SIMPLE-VAR-AFFECTS:
DOMAIN: (type is-a aggregate-variable)
RANGE: (type is-a simple-variable) 1)

(simple-var-affects
IS-A: relation
INVERSE AFFECTED-BY-SIMPLE-VAR:
RANGE: (type is-a aggregate-variable)
DOMAIN: (type is-a simple-variable)))

Figure 4-23: Relations linking simple and aggregate variables

Figure 4-24 depicts a meta-slot prototype for simple variables.

79

((variable
IS-A: concept })

((simple-variable
IS-A: variable
CONSTRAINED-BY:
SIMPLE-VAR-AFFECTS:
UTILITY-VALUE:
IMPORTANCE:
OF-SCHEMA:
OF-SLOT:))

Figure 4-24: Representation of a simple variable

The slot of-schema indicates the schema with the slot to which the meta-slot is attached. The
slot of-slot indicates the slot in the schema to which the meta-slot is attached.

We have seen the representation of the constraining relations between simple and aggregate
variables. In turn, aggregate variables can affect the values of higher level aggregate variables to
which they can be linked. This recursive influence is expressed by the pair of primitive relations
affected-by-aggr-varlaggr-variable-affects, shown in figure 4-25.

(affected-by-aggr-var
IS-A: relation
INVERSE AGGR-VAR-AFFECTS:
DOMAIN: (type is-a aggregate-variable)
RANGE: (type is-a aggregate-variable)))

{ aggr-var-affects
IS-A: relation
INVERSE: affected-by-aggr-var
RANGE: (type is-a aggregate-variable)
DOMAIN: (type is-a aggregate-variable)))

Figure 4-25: Relations connecting aggregate variables

Figure 4-26 depicts the meta-schema prototype representation of an aggregate variable.

80

(aggregate-variable
IS-A: variable
AGGR-VAR-AFFECTS:
AFFECTED-BY-AGGR-VAR:
AFFECTED-BY-SIMPLE-VAR:
UTILITY-VALUE:
IMPORTANCE: })

Figure 4-26: Representation of an aggregate variable

In the model, we treat explicitly two types of constraints, required constraints and preferential
constraints [Fox 83c]. The degree of ,atisfaction of a preferential constraint is expressed by a
utility function ranging between 0 and 1. A value of 0 utility is non-admissible; a value of 1 is
optimal. Variables, simple as well as aggregate, can be constrained by more than one constraint.
So, utility values are not only associated with constraints but also with simple and aggregate
variables. The utility value associated with a simple variable (slot) is calculated by taking the
weighted sum (with constraint importance as the weight) of the utilities of all the constraints that
affect the slot's value. The utility value associated with an aggregate variable (schema) is
calculated by taking the weighted sum of the utilities of all the constraints that affect the
aggregate variable.

Constraints differ in importance. A particular constraint could have different importance
depending on the context in which it is applied. The importance of a constrint is specified by a
value between 0 and 1. An importance of 0 implies that the constraint should not be considered,
and 1 signifies maximum importance. The actual level of importance is relative to the
importance of the other constraints under consideration. The "importance" slot contains the
value of a constraint's importance. The measure of importance of a constraint may be viewed as
a weight that can be combined with a constraint's utility value to form a weighted combination
of utilities. Constraints also differ in relevance. Depending on the context, a constraint may be
more relevant than others.

During the construction of a schedule, it may be found that one or more constraints may not be
satisfiable. For example, an operation cannot be scheduled on a resource at a particular time
because the resource is unavailable. The system should look for alternative ways to satisfy the
scheduling goal. The selection of an alternative to a specified constraint is called a constraint
relaxation. Constraint relaxations are specified using the relaxation-spec relation, shown in
figure 4-27. Moreover, relaxation specifications can be either continuous or discrete [Fox 83c],
shown in figures 4-28 and 4-29. A discrete relaxation specifies a number of discrete alternatives
(e.g., different machine alternatives), whereas a continuous one specifies relaxations over a
continuous variable such as time (e.g., due date can be continuously relaxed).

In general, it may not be possible to find a schedule that satisfies all specified constraints. The
scheduler must have a way of choosing the best among possible relaxations. The means by
which a scheduler makes such a decision is a system of utilities. The particular utility associated
with each relaxation fills the utility slot in the specializations of the relaxation-spec schema. A

81

constraint may have one of two effects on a schedule: it may determine the admissibility of a
schedule, or it may determine the acceptability of a schedule. Admissibility determines the
legality of a schedule against constraints that cannot be relaxed.

{ relaxation-specification
IS-A: concept))

((relaxation-spec
IS-A: relation
DOMAIN: (type is-a constraint)
RANGE: (type is-a relaxation-specification) })

Figure 4-27: Representation of constraint relaxations

(continuous-relax-spec
IS-A: relaxation-specification
U ITY-FUNCTION))

Figure 4-28: Continuous constraint relaxation

{ { discrete-relax-spec
IS-A: relaxation-specification
UTTLITY-FUNCTION:))

Figure/): Discrete constraint relaxation

The discrete type of constraint relaxation is further divided into two types, exclusive or
relaxation where only one of the alternatives can be chosen vand inclusive or where more than
one alternative could be chosen. These are shown in figure 4-30.

82

((exor-relax-spec
IS-A: discrete-relax-spec
UTILITY-FUNCTION:))

((inor-relax-spec
IS-A: discrete-relax-spec
UTILITY-FUNCTION:))

Figure 4-30: Exclusive and inclusive OR relaxations

Constraints are associated with particular appropriate relaxations through the pair of relations
has-relaxation-spec and relaxation-spec-of, shown in figure 4-31.

(has-relaxation-spec
IS-A: relation
INVERSE: relaxation-spec-of
DOMAIN: (type is-a constraint)
RANGE: (type is-a relaxation-spec)
TRANSITIVITY: (step has-relaxation-spec t) })

((relaxation-spec-of
IS-A: relation
INVERSE: has-relaxation-spec
DOMAIN: (type is-a relaxation-spec)
RANGE: (type is-a constraint)
TRANSMVrrY: (step relaxation-spec t) })

Figure 4-31: Representation of the relations
has-relaxation-spec/relaxation-spec-of

Having assembled the conceptual pieces that define a constraint, we present the constraint
representation in figure 4-32.

83

(constraint
IS-A: concept
RELAXATION-SPEC:
UTILITY-VALUE:
RELEVANCE:

IMPORTANCE:

CONSTRAINS: })

Figure 4-32: Representation of a constraint

4.6.2 Representing temporal relations
In our model, the relations among variables that we consider are primarily temporal relations.

In particular, Allen's 13 temporal relations defined over time intervals [Allen 88] are represented
in figures 4-33 and 4-34. The temporal relations express the precedence relations among
manufacturing activities in the process plan. The constraints associated with the activities are
checked for consistency and propagated over the temporal relations. For a detailed explanation
of this process, see chapter 2 of this report. These relations are:

* before: specifies that an activity or state takes place before another activity or state
ii time. The inverse of before is the after relation.

* meets: specifies that an activity or state takes place before, but without any
intervening time, another activity or state. Its inverse is met-by.

* overlaps: specifies that an activity or state begins before another activity or state in
time, but ends after the second begins and before it ends. Its inverse is
overlapped-by.

* during: specifies that an activity or state takes place during .ier activity or state
in time. Its inverse is contains.

* starts: specifies that an activity or state begins at the same time as another activity or
state (the two activities or states do not, however need to end at the same time). Its
inverse is started-by.

* finishes: specifies that an activity or state finishes at the same time as another
activity or state (the two activities, or states do not, however, need to start at the
same time). Its inverse isfinished-by.

* equals: specifies that an activity or state share the same time interval with another
activity or state. It is a reflexive relation.

84

(time-relation
IS-A: relation })

(before
IS-A: time-relation
INVERSE: after))

(after
IS-A: time-relation
INVERSE: before }}

((time-equal
IS-A: time-relation
INVERSE: time-equal }

((meets
IS-A: time-relation
INVERSE: met-by } }

((met-by
IS-A: time-relation
INVERSE: meets })

Figure 4-33: Five of Allen's Temporal Relations

85

((overlaps
IS-A: time-relation
INVERSE: overlapped-by))

((overlapped-by
IS-A: time-relation
INVERSE: overlaps))

[(during
IS-A: time-relation
INVERSE: contains))

((contains
IS-A: time-relatic.
INVERSE: during))

((starts
IS-A: time-relation
INVERSE: started-by})

((started-by
IS-A: time-relation
INVERSE: starts))

(finishes
IS-A: time-relation
INVERSE: finished-by))

((finished-by
IS-A: time-relation
INVERSE: finishes })

Figure 4-34: Representation of the rest of Allen's Temporal Relations

Allen's temporal relations are the attributes of a conceptual object, the time object, depicted in
figure 4-35.

86

(time-object
IS-A: conceptual-object
BEFORE:
AFTER:
TIME-EQUAL:
MEETS:
MET-BY:
OVERLAPS:
OVERLAPPED-BY:

DURING:
CONTAINS:
STARTS:
STARTED-BY:
FINISHES:
FINISHED-BY:)

Figure 4-35: Representation of a time object

Whereas Allen's temporal relations can be used to express the occurrence of events that are
relative to one another in a temporal sense, in scheduling there also arises the need to represent
the occurrence of events in an absolute temporal sense. For example, the fact that operationl has
to precede operation2 can be expressed by "operation l before operation2". On the other hand,
the reservation of resourcel (required by operationl) for the time interval [tl, t2] is the
expression of en event in an absolute temporal sense. Since, in scheduling, one is interested in
the persistence of facts over time, we have chosen the time interval as the basic time primitive
object. Characteristics of specific time points delineating a specific time interval (e.g., start and
end times of an operation) are defined by associating each interval with a specific time-line. This
association is made through the pair of inverse primitive relations dates and dated-by, shown in
figure 4-36.

87

[(dated-by
IS-A: time-relation
INVERSE: dates
DOMAIN:
(or (type is-a time-point) (type is-a time-interval))

RANGE: (type is-a time-line)) }

((dates
IS-A: time-relation
INVERSE: dated-by
RANGE:

(or (type is-a time-point) (type is-a time-interval))
DOMAIN: (type is-a time-line)))

Figure 4-36: The relations dates and dated-by

The representation of a time-line, depicted in figure 4-37, makes provisions for units of time, a
scale and functions to manipulate time. The slot point-form describes how a particular time unit
is represented. For example, if we want to represent weekly time lines, time is represented as a
pair of (year, week). The range of values for "year" are positive numbers, whereas the values for
"week" range from 0 to 52. The start-point and end-point attributes indicate respectively the start
and end point of the time-line. The attribute granularity provides an indication of the precision
of the time line. Add and subtract store procedures for adding and subtracting time periods from
each other.

((time-line
IS-A: time-object
POINT-FORM:
START-POINT:
END-POINT:
GRANULARITY:
ADD:
SUBTRACT:)}

Figure 4-37: Representation of a time line

In the definition of time-interval, shown in figure 4-38, attributes of importance are the various
probability distributions that are propagated over the temporal relations among the activities so
as to (a) account for the interactions induced by the problem constraints (intra-order, and inter-
order interactions), and (b) to identify critical activities and promising resource reservations for
these activities. For a detailed description of this process, refer to chapter 2.

88

((time-interval
IS-A: time-object
TIME-INTERVAL-OF:
START-TIME:
END-TIME:
DURATION:
APRIORI-S-T-DISTRIB:
NORMALIZED-APRIORI-S-T-D:
APRIORI-EARLIEST-START-TIME:
APRIORI-LATEST-START-TIME:
POSTERIOR-S-T-DISTRIB:
NORMALIZED-POSTERIOR-S-T-D:
DATED-BY:))

Figure 4-38: Representation of a time interval

Since in this chapter, our concern is representation, we present the definition of the attributes
that express probabilities. The apriori-s-t-distrib denotes the a priori probability that an activity
Ak will be scheduled to start at time t, the normalized-apriori-s-t-d, is the normalized a priori
start time distribution. Apriori-earliest-star-time and apriori-latest-start-time correspondingly
refer to the a priori probability distributions that the earliest (latest) start time of activity Ak will
be scheduled at time t. The posterior-s-t-disrrib is the a posteriori probability that Ak will start at
time t, i.e. after accounting for activity precedence constraints. Finally, the attribute
normalized-posterior-s-t-d denotes the same probability distribution after it has been normalized
to express that At will start exactly once.

89

References

[Allen 83] J.F.Allen.
Maintaining Knowledge about Temporal Intervals.
Communications of the ACM 26(11):832-843, 1983.

[Allen 84] J.F.Allen.
Towards a General Theory of Action and Time.
Artificial Intelligence 23(2): 123-154, 1984.

[Baker 741 K.R. Baker.
Introduction to Sequencing and Scheduling.
Wiley, 1974.

[Bell 84] Colin E. Bell and Austin Tate.
Using Temporal Constraints to Restrict Search in a Planner.
Technical Report AIAI-TR-5, Artificial Intelligence Applications Institute,

University of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, United
Kingdom, 1984.

[Davis 87] Ernest Davis.
Constraint Propagation with Interval Labels.
Artificial Intelligence 32:281-331, 1987.

[Dechter 88] Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence 34(1): 1-38, 1988.

[Erman 80] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser and D. Raj Reddy.
The Hearsay-il Speech Understanding System: Integrating Knowledge to

Resolve Uncertainty.
Computing Surveys 12(2):213-253, June, 1980.

[Fox 83] M. Fox.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon University,

1983.

[Freuder 82] E.C. Freuder.
A Sufficient Condition for Backtrack-free Search.
Journal of the ACM 29(l):24-32, 1982.

[Haralick 80] Robert M. Haralick and Gordon L. Elliott.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14(3):263-313, 1980.

[Johnson 74] L.A. Johnson and D.C. Montgomery.
Operations Research in Production Planning, Scheduling, and Inventory

Control.
Wiley, 1974.

[KC 86] KnowledgeCraft Reference Manual
Carnegie Group Inc., Pittsburgh, PA., 1986.

90

[Laird, Newell & Rosenbloom 87]
Laird, J.E., Newell, A., Rosenbloom, P.S.
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33(1): 1-64, 1987.

[Lepage 78] G. Peter Lepage.
A New Algorithm for Adaptive Multidimensional Integration.
Journal of Computational Physics 27:192-203, 1978.

[LePape 87] Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1987.
also appeared in Proc. Working Conference on Temporal Aspects in

Information Systems, Sponsored by AFCET and IFIP Technical
Committee TC8, North Holland Publishers, Paris, France, May 1987.

[Mackworth 77] A.K. Mackworth.
Consistency in Networks of Relations.
Artificial Intelligence 8(1):99-118, 1977.

[Montanari 74] Montanari, U.
Networks of Constraints.
In Proceedings IFIP Congress, pages 727-732. 1974.

[Muscettola 87] Nicola Muscettola, and Stephen Smith.
A Probabilistic Framework for Resource-Constrained Muti-Agent Planning.
In Proceedings of the Tenth International Conference on Artificial

Intelligence, pages 1063-1066. 1987.

[Nadel 86a] B.A. Nadel.
The General Consistent Labeling (or Constraint Satisfaction) Problem.
Technical Report DCS-TR-170, Department of Computer Science, Laboratory

for Computer Research, Rutgers University, New Brunswick, NJ 08903,
1986.

[Nadel 86b] B.A. Nadel.
Three Constraint Satisfaction Algorithms and Their Complexities: Search-

Order Dependent and Effectively Instance-specific Results.
Technical Report DCS-TR-171, Department of Computer Science, Laboratory

for Computer Research, Rutgers University, New Brunswick, NJ 08903,
1986.

[Nadel 86c] B.A. Nadel.
Theory-based Search-order Selection for Constraint Satisfaction Problems.
Technical Report DCS-TR- 183, Department of Computer Science, Laboratory

for Computer Research, Rutgers University, New Brunswick, NJ 08903,
1986.

[Newell 69] Newell, A.
Heuristic Programming: Ill-Structured Problems.
Progress in Operations Research 3:360-414, 1969.

91

[Newell&Simon 561
Newell, A., and Simon H. A.
The Logic Theory Machine: A Complex Information Processing System.
IRE Transactions on Information Theory IT-2 3:61-79, 1956.

[Newell&Simon 631
Newell, A. and Simon, H.A.
Computers and Thought: GPS: A Program that Simulates Human Thought.
McGraw-Hill Co., New York, 1963.

[Newell&Simon 72]
Newell, A. and Simon, H.A.
Human Problem Solving.
Prentice Hall, 1972.

[Nudel 83] Bernard Nudel.
Consistent-Labeling Problems and their Algorithms: Expected-Complexities

and Theory-Based Heuristics.
Artificial Intelligence 21:135-178, 1983.

[Ow 84] Peng Si Ow.
Heuristic Knowledge and Search for Scheduling.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA 15213, 1984.
(Ph.D. Thesis).

[Purdom 83] Paul W. Purdom, Jr.
Search Rearrangement Backtracking and Polynomial Average Time.
Artificial Intelligence 21:117-133, 1983.

[Rit 86] Jean-Francois Rit.
Propagating Temporal Constraints for Scheduling.
In Proceedings of the Sixth National Conference on Artificial Intelligence,

pages 383-388. 1986.

[Sacerdoti 74] E.D. Sacerdoti.
Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence 5(2): 111-135, 1974.

[Sadeh&Fox 881 N. Sadeh and M.S. Fox.
Preference Propagation in Temporal/Capacity Constraint Graphs.
Technical Report CMU-CS-88-193, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA 15213, 1988.
Also appears as Robotics Institute technical report CMU-RI-TR-89-2.

[Smith 83] Stephen F. Smith.
Exploiting Temporal Knowledge to Organize Constraints.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA 15213, 1983.

92

[Smith 85] Stephen F. Smith and Peng Si Ow.
The Use of Multiple Problem Decompositions in Time Constrained Planning

Tasks.
In Proceedings of the Ninth International Conference on Artificial

Intelligence, pages 1013-1015. 1985.

[Smith, Fox &Ow 86]
S. Smith, M. Fox, and P.S. Ow.
Constructing and Maintaining Detailed Production Plans: Investigations into

the Development of Knowledge-Based Factory Scheduling Systems.
AI Magazine 7(4):45-61, Fall, 1986.

[Stefik 81] Mark Stefik.
Planning with Constraints (MOLGEN: Part 1).
Artificial Intelligence 160:111-140, 1981.

[Stone 86] Harold S. Stone and Paolo Sipala.
The average complexity of depth-first search with backtracking and cutoff.
IBM Journal of Research and Development 30(3):242-258, 1986.

[Stroud 71] A. H. Stroud.
Series in Automatic Computation: Approximate Calculations of Multiple

Integrals.
Prentice Hall, 1971.

[Thomas 83] Thomas and Finney.
Calculus and Analytic Geometry, Sixth Edition.
Addison Wesley, 1983.

[Tsang 87] Edward P. K. Tsang.
The Consistent Labeling Problem in Temporal Reasoning.
In Proceedings of the Seventh National Conference on Artificial Intelligence,

pages 251-255. 1987.

[Valdes-Perez 87] Raul E. Valdes-Perez.
The Satisfiability of Temporal Constraint Networks.
In Proceedings of the Seventh National Conference on Artificial Intelligence,

pages 256-260. 1987.

[Vere 83] Stephen Vere.
Planning in Time: Windows and Durations for Activities and Goals.
IEEE Transactions on Pattern Analysis and Machine Intelligence

PAMI-5"(3):246-267, 1983.

[Vilain 86] Marc Vilain and Henry Kautz.
Constraint Propagation Algorithms for Temporal Reasoning.
In Proceedings of the Sixth National Conference on Artificial Intelligence,

pages 377-382. 1986.

93

DISTRIBUTION LIST

addresses number
cf copies

Northrup Fowler III 20

RAOC/COES

RADCDOVL 1

GRIFFISS AFB NY 13441

RADC /IMP 2

GRIFFISS AFB NY 13441

ADMINISTRATOR 5
DEF TECH INF CTR

ATTN: DTIC-FDA
CAMERCN STA BG 5
ALEXANDRIA VA 23U4-6145

RADC/CDTD 1

BLDG 3, ROOM 16

GRIFFISS AFB NY 13441-5700

HQ USAF/SCTT 1

Pentagon
Wash DC IU33U-519U

DIRECTOR 1

DMAHTC
ATTN: SOSIM

Wash DC ZU315-O03U

Director, Into Systems 1

OASD (C31)
Rm 3E181
Pentagn
Wash DC 2U301-304U

Naval Warefare Assessment Center 1

Attn: GIDEP Oceraticns Center

Code 3UG1 (E. Richarcs)
Corona CA 91/20

DL-1

HQ AFSC/XTKT
ANDREWS AF 9 DC 05 34-50 J

HQ AFSC/XRK

ANDREWS AFB VD 2U334-5UU

HQ SAC/SCPT
OF FUTT AFb NE 68113-5001

DTESA/RQE
ATTN: LARRY G.MCMANLS

KIRTLAND AFB NM 87117-5000

HQ TAC/DRIY
Attn: Mr. Westerman

LangLey AFB VA 23665-5001

HQ TAC/DRCA 1

LANGLEY AFB VA 23665-500

ASDIENEMS 2
Wright-Patterscn AFB OH 45435-6503

ASD/AFALC/AXAE I

At tn: W. H. Dungey
Wriight-Patterson AFE OH 45431-6533

AFIT/LDEE 1
BUILDING 640o AREA 8

WRIGHT-PATTERSON AFB OH 45433-6583

WRDC/PLPC 1
WRIGHT-PATTERSON AFB OH 45433-6553

DL-2

AAMRL/HE

WR IGHT-PAT TERSON AFB CH 4 513 5-65 f

Air Force Human Resotrces Laboratory

Technical Documents Center

A F HRL/LRS-TDC
Wright-Patterscn AFB OH 45433

2f!0 ABW/SSLT
Bldg 262

Post 1 IS
Wright-Pat terson AFB OH 454433

AUL/LSE
MAXWELL AFB AL 361 12-5564

Defense Communications Engineering Ctr

Technical Library

1860 Wiehle Avenue

Reston VA 22090-5OO

COMMAND CONTROL AND COMMUNICATIONS DIV 2

DEVELOPMENT CENTER

MARINE CORPS DEVELOPPENT & EDUCATION COMMAND

ATTN: CCDE DICA

QUANTICO VA 12134-5080

AFLMC/LGY

ATTN: CHi, SYS ENGR DIV

GUNTER AFS AL 36114

U.S. Army Strategic Defense Command

Attn: DASD-H-NPL

P.O. Box 150(
Huntsvit te AL 35t07-3801

COMMANDING OFFICER

NAVAL AVIONICS CENTER

LIBRARY - 0//65

INDIANAPOLIS IN 46219-2189

DL-3

COMMANDING OFFICER

NAVAL TRAINING SYSTEPS CENTER

TECHNICAL INFORMATION CENTER

BUILDING e068
ORLANDO FL 3Z813-110C

COMMANDER

NAVAL OCEAN SYSTEMS CENTER

ATTN: TECHNICAL LIBRARY, CODE 9642B

SAN DIEGC CA 9215e-5C00

COMMANDER (CODE 3433)
ATTN: TECHNICAL LIBRARY

NAVAL WEAPONS CENTER
CHINA LAKE* CALIFORNIA 93555-6001

SUPERINTENDENT (CODE 1444)
NAVLA POST GRADUATE SCHCOL

MONTEREY CA 93943-5000

COMMANDING OFFICER 2
NAVAL RESEARCH LABORATORY
ATTN: CODE 2627

WASHINGTON DC 20375-50UU

SPACE & NAVAL WARFARE SYSTEMS COMMAND
PMW 153-SDP

ATTN: R. SAVARESE

WASHINGTON DC 20363-5100

CDR# U.S. ARPY MISSILE COMMAND 2
REDSTONE SCIENTIFIC INFORMATION CENTER

ATTN: APSMI-RD-CS-R (DOCUMENTS)

REDSTONE ARSENAL AL 35898-5241

Advisory Group on Electron Devices 2

Hammcnd John/Technicat Info Coordinatcr

2U1 Varick Street# Suite 1140

New York NY 10014

UNIVERSITY OF CALIFCRNIA/LOS ALAMOS

NATIONAL LABORATORY

ATTN: DAN BACA/REPORT LIBRARIAN
P.O. BOX 1665, MS-P364

LOS ALAMOS NM 87545

DL-4

RAND CORPORATION THE/LIBRARY

HELFER DORIS S/HEAD TECH SVCS

P.O. BOX 2138
SANTA MONICA CA 9U4O6-2138

AEDC LIBRARY (TECH REPORTS FILE) 1

MS-1O
ARNOLD AFS TN 37389-9998

USAG 1

Attn: ASH-PCA-CRT
Ft Huachuca AZ 85613-6000

JTFPO-TD I

Attn: Director/Advanced TechnoLogy

1500 Ptanning Research Drive

McLean VA 22102-5U99

AFEWC/ESRI 3

SAN ANTONIO TX 78243-50UU

485 EIG/EIER (OMO) 1

GRIFFISS AFB NY 13441-6348

ESD/AVS 1

ATTN: ADV SYS DEV

HANSCOM AF8 RA 01731-5000

ESOIICP 1

HANSCOM AFB MA 01731-5000

ESODAVSE 2

BLDG 1704

HANSCOM AFB MA 01731-5000

HQ ESO SYS-2 1

HANSCOM AFB VA 01131-5UUU

DL-5

The Software Engineering Institute
Attn: Major Dan Burton, USAF
Joint Program Office
Carnegie leLton University
Pittsburgh PA tS13-389U

DIRECTOR

NSA/CSS
ATTN: T513/TDL (DAVID MARJAPUM)
FORT GEORGE G MEADE ND ,0755-600U

DIRECTOR
NSAICSS
ATTN: R24
FORT GEORGE G MEADE PD 20755-6U0

DIRECTOR
NSA/CSS
ATTN: R21
9800 SAVAGE ROAD
FORT GEORGE G eEASDE MD eO755-6000

DIRECTOR
NSA/CSS
ATTN: R5
FORT GEORGE G MEADE PD 2U755-6UU0

DIRECTOR
NSA/CSS
ATTN: R8
FORT GEORGE G MEADE !D 20755-6000

DIRECTOR
NSA/CSS
ATTN: S21
FORT GEORGE G MEADE FD 2U755-6UU0

DIRECTOR
NSA/CSS
ATTN: W5
FORT GEORGE G PEADE FD ?0755-6000

DoD COMPUTER SECURITY CENTER
ATTN: C4/TIC

98U0 SAVAGE ROAD
FORT GEORGE G NEADE FD 2U755-600

DL-6

ESD-MITRE Software Center Library

c/o Ns J.A. C(apc
MITRE Corp, D-?U

Burtingtcn Roac

eedfori, MA 01 130

Software Engineering Institute Tech Lib.

ATTN: Korota Fuchs

Carnegie--MeLLcn University

Pittsburgh, PA 15e32

Dr. Edward A. Feigentaum

Knowledge Systems Laboratory

Stanford University

7U1 ketch Road, Bldg C

Part Alto# CA 94504

Dr. Steven Vere

Lockheed Al Center, 90-06/259

Lockheed Research & Development Division

3e51 Hanover St.
Palo ALto, CA 943U4-1181

Dr. Austin Tate, Director

AIAI

University of Edinburgh

80 South Bridge

Edinburgh, Scotland EHI IHN

Mirostav Benda

Boeing
P.O. Box 24346, P/S 7L-64

Seattle, wA 98124

Dr. SauL Amarel

Department of Computer Science

Busch Campus
Rutgers University
New Erunswick, NJ 08903

Charles F. Schmidt

Department of Computer Science
Busch Cawpus

Rutgers University

New Brunswick, NJ 08903

Mr Robert Drazcvich

Advanced Decision Systems

1500 Ptymouth St.

Mountain View, CA 94C43-1230

DL- 7

Dr Brian P. F'cCune
Advdnced Decision Systems

1500 Plymouth St.
Mountain View, CA 94C45-1230

Andrew S. Cromarty
Advanced Decisicn Systems
15UO Plymouth St.
Mountain View, CA 94C43-1230

Dr. Drew McDermott
Dept of Computer Science
Yale University
P.O. Box 2158 Yale Station

New Haven, CT C6520

W. A. Frawley
GTE Labs

4U Sylvan Road

Waltham, MA 02254

Dr. Randelt Schumaker

Code 751U
NRL
4555 Overlook Ave, Sk
Washington, DC 20575

Robert Lawter
Boeing Computer Services
Advanced Technctogy Applications Division
P.O. Box 24346
Seattle, WA 98124-0346

R. Bruce Roberts

Bolt Beranek and Newian Inc.
Department of Artificial Intelligence
19 Moultcn Street
Cambridge, MA 02258

)r Eugene Charniak

Brown University
Box 1910
Providence, RI 02912

Dr Jaime Carboretl
Carnegie-Mel Ion University

Computer Science Department

Scherley Park

Pittsburgh. PA 15213

DL-8

Dr Mark Fox

Carnegie-Met tor University

Intelligent Systems Laboratory

The Robotics Institute
Pittsburgh, PA 15e13

Dr Jchn Hoptcroft

Cornett University

Computer Science Department

Upson Hatl
Ithaca, NY 14853

Lt C. Robert Simpson 2

DARPA/ ISTO

14U0 Wi lson Blvd

Arlington. VA 22209-2389

Dr Donate W. Lovelanc

Duke University

Computer Science Department

Durha, NC 2706

Dr Perry W. Thcrrdyke
FMC CorDoration

Central Engineering Laboratories

1e05 Coleman Avenue, Box 580

Santa Clara, CA 95052

Dr Piero P. Bonissone

General Electric Company

Corporate Research and Development

1 River Road, Building 3-567

Schenectady, NY 12345

Thomas E. Cheatham

Harvard Lriversity

Aiken Computation Laboratory
3.S Oxtord Street
Cambridge, MA 02138

John R. Beane

Honeywello Inc.

Systems K Research Center MNl-2546
26UU Ridgway Parkway NE
Minneapolis, MN 55413

Robert C. Schrag
Honeywel L., Inc.

Systems K Research Center MN11-2346

26UO Ridgway Parkway NE

Minneapotis, MN 55413

Dr. Philip Ktahr

In ferernce Corporation

5V'JO West Century ouLevArd

Los Angeles, CA YJU45

DL-9

Dr Paul Porris

Intel liCcro
19/5 El Camino Real 6est
Mountain View, CA 94C4U-216

Dr Thomas P. Kehler
Intel iCorp

1915 EL Camino Real West
Mountain View, CA 94C4U-e216

Dr Gerarc T. Capraro

Kaman Sciences Corporation
258 Genesee Street

Utica, NY 13!0U

Dr Cordell Green
Kestrel Institute
18U1 Page Milt Road
Palo ALto, CA 943U4

Dr. John Lemmer
Knowledge Systems Concepts, Inc.
215 North Washington Street
P. 0. Box 508

Rome. NY 13440

Dr Christine A. Montgomery

Logiccnr Inc.
Operating Systems Division

21U31 Ventura Boulevard
Woodland Hills, CA 91364

Richard H. Hitll
Microelectronics and Computer Technology Corp.
Echelon Building #1# Suite 2UU
9430 Research Boulevard

Austin, TX 78759

Dr Randall Davis
MIT Artificial Intelligence Laboratory

Room NE45-801A

545 Technology SQuare

Cambridgeo MA 02139-1986

Dr Charles Rich
MIT Artificial Intelligence Laboratory

Room NE43-839
545 Technology SQuare

Cambridge, MA C2139-1986

DL-10

Dr Patrick Winston

MIT ArtitIciaL Intelliience Laboratory

Room NE43-816

545 Technology Square

Canbr11ge, MA 02139-1986

Dr Ramesh S. Patit

! IT Laboratory fcr Ccmputer Science
Room NE4-516

545 Technology Square

Cambridge, MA C2139-1986

Dr Peter Szotovits

MIT Laboratory fcr Ccmputer Science

Clinical Decision Making Group

545 Technology Square
Cambridge, MA 02139-1986

Dr J.A. Robinson
University Professor

Syracuse University

Syracuse, N.Y. 15,44

Dr B. Chanarasekaran

Ohio State University

Depart. cf Computer and Information Sciences

2U36 Nei(Avenue
CoLumbus, OH 4321U

Dr John Josephson
Ohio State University

Depart. of Computer and Information Sciences

2036 Nei(Avenue
Columbus, OH 4521U

Dr Jude E. Franklin

PLanring Research Corporation

Research and Devetopwent Technology Division

1!U0 Planning Research Drive

McLean, VA 221C2

Sanjai Narain
The Rand Corporation
Information Sciences Department

1/00 Uain Street
Santa Monica, CA 90406

Dr Harvey Rhody

RIT Research Corporation

75 Hightower Road

Rochester, New York 146i3

DL-11

Dr Casimir A. Kutikowski
Rutgers University

Department of Computer Science

Hit Center, Busch Campus

New Srunswick, NJ 08903

Dr Tom Mitchell

Rutgers University

Department of Computer Science

Hilt Center, Busch Campus

New erunswick, NJ 089U3

Dr Sholom Weiss
Rutgers University

Department ot Computer Science
Hit Center, Busch Campus
New 9runswick, NJ 0d905

Dr Jay M. Tenenbaum

SchLumberger Patc Alto Res Center

3540 Hit lview Ave.
Palo Altc, CA 94304

Dr David Barstcw

SchLumberger-Dolt Research Center

Old Quarry Rcad
Ridgefield, CT U68?7-4108

Dr Elaine Kant

Schluffberger-DCLI Research Center

Old Quarry Road

Ridgefield, CT 06677-41Ut

Dr Richard J. kaldinger

SRI International
Artificial Intelligence Center
335 Ravewnswood Avenue
Menlo Park, CA 94U15-3493

Dr Jan Aikens
Computer Science Department

Stanford University
Margaret Jacks Hatl
Stanford, CA 943U5

Dr Zohar Manna
Computer Science Department

Stanford University
Margaret Jacks Hall

Stanford, CA 9435

Dr Nits J. Nilsson* Chairman

Computer Science Department

Stanford University
Margaret Jacks Halt

Stanford, CA 943U5

DL-12

Dr Net leke Aiello
Stanford University
Heuristic Programming Project
701 Welch Roado Building C

Palo Alto. CA 943U4

Dr Harold 9rown
Stanford University
Heuristic Programming Project
701 Welch Road. Building C
Palo Alto, CA 943U4

Dr Bruce G. Buchanan
Stanford University
Heuristic Programming Project
701 Welch Road# Builcing C
Palo Altc, CA 943U4

Dr Rooert Engetmore
Stanford (University
Heuristic Programming Project
?U1 Welch Roado Building C
Palo Alto, CA 943U4

Dr Larry Fagan
Stanford University
Heuristic Programming Project
?U1 Welch Road* Buitoing C
Palo Alto, CA 94U4

Dr Michael R. Genesereth
Stanford Unliversit y

Heuristic Programming Project
7U1 Welch Road# Building C
Palo ALtc, CA 943U4

Dr Barbara Hayes-Roth
Stanford University
Heuristic Programming Project
7U1 Welch Road. Builcing C
Palo Alto, CA 943U4

Dr H. Penny Nii
Stanford University
Heuristic Programming Project
?U1 Welch Road. Builcing C
Palo Alto, CA 943U4

Or Edwarc H. Shorttiffe
Stanford University ,edicat Center
Division of General Internal Medicine

Medical Computer Science TC-135

Stanfori. CA 943JL

Dr Stuart C. Shapiro
SUNY/But taro
Computer Science Department
2Z6 Belt Hall
Aiffaloo NY 1426U

DL- 13

Dr Sargur N. Srihari
SUNY/But tato
Computer Science Department
2 6 Bel I Halt
8utfatop NY 14260

Dr Richard 0. Duda
Syntel tigence
1UO Hamlin Court
Sunnyvalep CA 94088

Dr Peter E. Hart

Syntetligence
1000 Hamltin Court
Sunnyvale* CA 94088

Dr Frederick Hayes-Roth
Teknowtedge, Inc.
1850 Embarcadero

Palo Altoo CA 94301

Bruce Bultock
Teknowledge Federal Systems

501 Marin Streetv #214
Thousand Oaksp CA 91360

Gary Edwards

Teknowteoge Federal Systems
501 Marin Street, #214
Thousand OakS CA 91360

Dr Roger Bate, Director
Texas Instruments Certral Research Lats
Computer Science Laboratory
P.O. Box Z26015, MS 238
Dallas, TX 75266

Dr Ed Taylor
TRW Defense & Space Group
Building R2/2094
One Space Park
Redondo Beach# CA 90278

Dr Paul Cohen
University of Passachusetts
Computer a Inforeation Science Department
Amherst* MA 01003

DL-14

Dr W. 9ruce Croft

University of Fassachuset ts
Computer & Inforraticn Science Department
Amherst. MA U1JUS

Dr Victor R. Lesser
University of Passachusetts
Computer & Information Science Department
Amherst. MA U1U03

Dr Harry E. Popte
University of Pittsburgh
Decision Systems Labcratory
1360 Scaite Halt
Pittsburgh. PA 15261

Dr James F. Allen
University of Rochester
Department of Computer Science
Rochester. NY 14627

Dr Robert M. Balzer

University of Southern California

Information Sciences Institute
46t6 Admiralty Way

Marina del Rey, CA 9C292-6695

Dr Lee Erman

TeknowLeage, Inc
18O Embarcadero
Palo Alto# CA 94301

Dr Rcnatd. Ohtarder
University Of Southern California

Information Sciences Institute

4676 AdmiraLty Way

Marina del Rey, CA 90292-6695

Dr Wiltliam R. Swartout
University of Southern California
Information Sciences Institute
4616 Admiralty Way
Marina del Rey. CA 9C292-6695

Or J. C. Brown

University of Texas at Austin
Department of Computer Sciences
Austin, TX 78712-1188

DL-15

Advanced Computer Architectures/Systems

14C C

35UO West Balcones Center Drive
Austin, Texas 78759

Dr Benjawin Kuipers
University of Texas at Austin
Department of Computer Sciences
T. S. Painter Hall 3.28
Aust in, TX 78711-1188

Dr Bruce Porter
University of Texas at Austin

Department of Computer Sciences
Austin, TX ?8712-1188

Dr Daniel G. Bobrow

Xerox Corporat ion
Palo Alto Research Center
3553 Coyote Hill Road
Palo Alto, CA 943U4

Dr Jonan de KLeer

Xerox Corporation
Palo Alto Research Center

3553 Coyote Hill Road
Palo Alto, CA 943U4

Dr Mark Stefik
Xerox Corp
Palo Alto Research Center

3353 Coyote Hill Roac

Palo Alto, CA 94304

Dr Christopher Riesbeck
Yale Univ (Comouter Science)
P.O. Box 115bo Yale Station
New Haver, CT C652U

Mark Burstein
BBN Laboratories, Inc.
10 MCuton Street

Cambridge, MA ()22j8

David Chapman
MIT Al Laboratory
545 Technotogy Square
Cambridge, MA 02159

Thomas Dean

Box 191U
Brown University

Computer Science Department

Providence, RI 02912

DL-16

Peter Friedtanc
NASA Ames Research Center
RIA:244-1 I
Motfett Field# CA 94C35

Mike Georgeft
Australian Al Institute
1 Grattan St., Carlton
Victcria 305!
Austrai ta

Kristian Hammond
The University of Chicago
1 1UO East 58th Street
Ryerson 152

Chicagop IL 60631

Richard Korf
UCLA
3532 h oelter Hall
Computer Science Department
Los Angeles, CA 900,e4

Paul Lehner
George Mason Uriversity
Info Technology 9 Engineering

44UU University Drive
Fairfax, VA Z2033

Ted Linden
ADS
1UO Plymouth St.

Mountain View, CA 94C43-1230

Tomas Lozano-Perez
MIT AI Laboratory

545 Techrclogy Square
Cambridge, MA C2139

Mat t Ginsberg
Stanford University
Computer Science Oepartment
Stanfordo CA 94305

Steven Smith c/o Patty Hodgson
Carnegie-ReLton University
Robotics Insti tute

Scertey Park
Pittsburgh# PA 15213

DL-17

Ra) kal 1
Texas Instruments, Inc.
Artificial Intelligence Laboratory

P.O. Box 65j474, MIS 238
Dallas, TX 75265

Ben Wise
Dartmouth College
Thayer School of Engineering

Hanover* NH 03755

Bolt Beranek Newman Laboratories
ATTN: Dr. Ed. Walker

CASES Program Manager

1U Mcultcn St.
Cambriage, MA 0e238

Elliot Scloway
University of Pichigan
Dept. of Elect. Eng. & Computer Scinece
IU Beale Ave. 3300 EECS Building
Ann Arbor, MI 481U9

Judea Pearl
4731 Boelter Hall
UCLA
Los Angeles# CA 90024

Dr. William Clancy
Institute for Research Learning

33.3 Coyote Hilt Rd.
Palo Alto, CA 941U4

Prof Eric Sandewall
Dept of Computer Science
Linkoping University
58183 Linkoping
Sweden

Yoav Shoham

Dept of Computer Science
Stanford University
M/S 214U
Stanford, CA 94305

Ken Forbus

*ual Reasoning Group
Univ. of Itlinois
1304 W. Springfield Av*.
Urbana, IL 618C1

DL-18

Rick Altermar

Computer Science Departme-,

Ford Hall

Branneis University
Waltham, tA U22 4

Mark Drummond

NASA Ames Research Center

Mail Stop: 244-1?
mottett Field, CA 94C35

Richard Fikes

Price Waterhouse Technology Center

68 Willow Road

Menlo ParK, CA 94U25

P. James Firby
PO Box 6656

Yale Station

Yale University
New Haven, CT 06520

Jim Hendter

Computer Science Department

University ot Parylard

College Park, IvD Z0742

Francois F. Ingrand SRI

AI Center
SRI International

355 Ravenswocd Ave
Menlo Park, CA 94025

Leslie Kaetbtirg

TeLeos Research

5f6 Middlefield Rd.

Palo Alto, CA 943U1

Henry Kautz

AT&T Belt Labs

6UU wountain Ave, Room SC-402A

Murray Hvlt, NJ 0197 4

Amy L. LanSky

Al Center

SRI Internationat
353 Ravenswood Ave
Menlo Park, CA 94025

DL-19

Dana S. Nau

Computer Science Dept.

University of Parytand

College Park, ND 20742

Ray Perrault
SRI Al Center
355 Ravenswocd Ave.
Menlo Park, CA 94025

Stan Rosenschein
TeLecs Research
516 Middlefield Road

Palo ALtoPCA 94301

Jim Schmclze

Dept. of Computer Science

Tufts University

Medford, MA 02155

Candy Sicner
1 Aiken Labs

Harvard University

Cambridge, MA C2138

David E. Smith

Rockwell Palo Alto Science Center

444 High St.
Palo Alte, CA 94301

Michael Fehling
Pockwelt Palo Alto Science Center

444 High Street
Palo Altc, CA 943U1

N.S. Sricharan

FMC Corporatior

Central Engin. Labs Eox 580

I25 Coleman Ave.
Santa Clara, CA 95052

DL-20

Katia Sycara 2

Robotics Institute
Carnegie Mellor University

Pittsburgh PA, 15213

Josh Tenenberg

Dept. of Computer Science

University ot Rocheszter

Rochester, NY 1462/

Monte Zweben

NASA AMES Research Center
mail Stop 244-17
Motfett Field, CA 94C35

Alice M. Agogino

Dept of 10echanical Ergineering
5136 Etcheverry Hall

University of California, Berkeley

9erekley, CA 9472U

Robert Beaton
Draper Laboratory
Camoridge, MA C2139

Glen Castore

Honeywell Systems and Research Center

366U Tecmrolcgy Dr.
Minneapolis, MN 55418

Norman H. Chang

Dept. of Elect. Eng. and COm. Science

University of California, Berxeley

Berkeley, CA 94704

Bruce D'Ambrcsio

Deot of Computer Science

Oregcr State University

Corvallis, OR 97531-46UI

DL-21

Karen Johnson

Texas Instruments
Po Box 6UU246

Mail Stop 3645

Eric Horivtz

Knowledge Systems Laboratory

Stanford University

?UI 6elch Rd., Building C

Palo Alto, CA 94394

Thomas J. Latfey

Lockheed Missle & Space Co.
0/92-IU a/25?

3251 Hanover Street

Palo ALto, CA S43U4Q

A. Gabrielian

ThomsCn-CSF, Inc

63U Hansen Way, Suite 25U

Palo ALto, CA 94304

DL-22

